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General info about the course

• BM20A7700 Special Course on Inverse Problems.

• Lecturers: Felipe Uribe.

• M.Sc./Ph.D. Course (5 credits).

• 7 weeks; 11.01–23.02 (2024).

• Methodology: Slides and written derivations on whiteboard. Python exercises and tutorials.

• Lectures: Thursdays 14:00–17:00 (3 blocks of 45 min).
• Exercises: Fridays 10:00–12:00.
• Evaluation: Mid project (35%) and final project (35%) plus oral examination (30%).
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Learning objectives

• Understand ’probabilistic objects’ and their usage in uncertainty quantification.

• Apply Monte Carlo methods, evaluate their accuracy, and reduce their variance.

• Represent random variables that take values in a function space (e.g., Karhunen-Loéve expansion
and neural networks).

• Apply statistical approaches to solve inverse problems (e.g., frequentist and Bayesian inference).

• Formulate different types of priors models (e.g., conjugate and hierarchical priors).

• Implement standard numerical methods for Bayesian computations (e.g., MCMC).
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Lecture’s schedule

– Mid project (due-date 1 week after the tutorial on week 3).
– Final project/oral exam (due-date 1 week after the tutorial on week 7).

Week Date (type) Content
1. 11-12.01 (hybrid) Probability theory review
2. 18-19.01 (zoom) Monte Carlo methods and variance reduction
3. 25-26.01 (zoom) Random fields: KLE and BNN
4. 01-02.02 (hybrid) Intro to statistical inverse problems
5. 08-09.02 (zoom) Prior models and intro to MCMC
6. 15-16.02 (hybrid) MCMC
7. 22-23.02 (hybrid) Advanced topics

The tutorial on week 3 (Friday 26) discusses the mid-term project. Unfortunately, it has to be
moved to the next week; ideally Monday 29 or Tuesday 30. Let’s discuss this in class.
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What is in the name?

Uncertainty quantification (UQ):
the science of characterizing and
reducing uncertainties in com-
putational models of real world
phenomena.

Inverse problems (IP): consist of
using the actual result of some mea-
surements to infer the values of pa-
rameters that characterize a system
of interest.
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What is in the name?

According to the U.S. Department of Energy1:

“UQ studies all sources of error and uncertainty, including the following: systematic and stochastic
measurement error; ignorance; limitations of theoretical models; limitations of numerical repre-
sentations of those models; limitations of the accuracy and reliability of computations, approx-
imations, and algorithms; and human error. A more precise definition is: UQ is the end-to-end
study of the reliability of scientific inferences”.

1 U.S. Department of Energy. “Uncertainty quantification and error analysis”. In: Scientific grand challenges for national security:
the role of computing at the extreme scale. 2009, pp. 121–142.
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What is in the name?

• The origins of UQ might trace back to the beginnings of the Monte Carlo method2.

• Extended application of UQ in computational mechanics started with the seminal work3 and
the Markov chain Monte Carlo boom in the 90’s.

• UQ is not a mature field. Both because of its youth as a field and its very close engagement
with applications, UQ is much more about problems and methods. There are some very
elegant approaches within UQ, but as yet no single, general theory of UQ.

2 N. Metropolis and S. Ulam. “The Monte Carlo Method”. In: Journal of the American Statistical Association 44.247 (1949),
pp. 335–341.

3 R. G. Ghanem and P. D. Spanos. Stochastic finite elements: a spectral approach. Revised edition. Dover Publications, 2012
(Original in 1991).
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UQ: definition and classification

Uncertainty =⇒ status of a quantity that is known with imprecision, or simply unknown. In
practice, uncertainty is typically categorized in two types:

• Aleatory uncertainty: also referred to as irreducible or inherent uncertainty, is related to
the natural variability of the parameters involved.

• Epistemic uncertainty: also known as systematic uncertainty, stems from lack of knowledge
(data), therefore it can be reduced when new information is available.

There exist several theories to represent uncertainty: probability theory, fuzzy set theory, evidence
theory, interval analysis, random set theory (see, e.g., 1).
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Uncertainty =⇒ status of a quantity that is known with imprecision, or simply unknown. In
practice, uncertainty is typically categorized in two types:

• Aleatory uncertainty: also referred to as irreducible or inherent uncertainty, is related to
the natural variability of the parameters involved.

• Epistemic uncertainty: also known as systematic uncertainty, stems from lack of knowledge
(data), therefore it can be reduced when new information is available.

There exist several theories to represent uncertainty: probability theory, fuzzy set theory, evidence
theory, interval analysis, random set theory (see, e.g.,4).

4 C. Joslyn and J. M. Booker. “Generalized information theory for engineering modeling and simulation”. In: Engineering Design
Reliability Handbook. Ed. by E. Nikolaidis et al. CRC Press, 2004. Chap. 9, pp. 1–40.
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UQ: definition and classification

A couple of basic examples about this classification before we continue:

• Aleatory: uncertainty caused by randomness. The data-generating process of a coin flipping
experiment has a stochastic nature that cannot be reduced by any source of information.
A model of this process is only able to provide probabilities for the two possible outcomes
(heads and tails), but no definite answer.

• Epistemic: uncertainty caused by ignorance. What does the word ‘kichwa’ mean in Swahili
language, head or tail? The possible answers are the same as in coin flipping, and one might
be equally uncertain about which one is correct. Yet, the nature of uncertainty is different,
as one could easily get rid of it.
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UQ: definition and classification

A couple of basic examples about this classification before we continue5:

• Aleatory: uncertainty caused by randomness. The data-generating process of a coin flipping
experiment has a stochastic nature that cannot be reduced by any source of information.
A model of this process is only able to provide probabilities for the two possible outcomes
(heads and tails), but no definite answer.

• Epistemic: uncertainty caused by ignorance. What does the word ‘kichwa’ mean in Swahili
language, head or tail? The possible answers are the same as in coin flipping, and one might
be equally uncertain about which one is correct. Yet, the nature of uncertainty is different,
as one could easily get rid of it.

5 E. Hüllermeier and W. Waegeman. “Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and
methods”. In: Machine Learning 110 (2021), pp. 457–506.

F. Uribe | LUT University SCIP | 9



Two types of UQ tasks + a bonus
In probabilistic UQ, we can distinguish the following fundamental problems:

• Forward uncertainty propagation: direct incorporation of the uncertain parameters through
the system of interest. The main purpose is to characterize the uncertainty of the system
response.

• Inverse uncertainty quantification: incorporation of observational data into the compu-
tational model to infer/identify the uncertain parameters describing the system of interest.

• Model learning problem: usage of input-ouput data to infer the computational model
describing the system of interest.

Specific modeling scenarios can target several UQ objectives involving the combination of the
previous tasks, e.g., rare event simulation, surrogate models, model reduction, stochastic opti-
mization, system identification.
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Three types of UQ tasks

Figure: In FP, we model the uncertainty in the input and propagate it through the model to
characterize the uncertainty in the output. In IP, we have data about the output which is used to
naively invert the model (don’t do this) and characterize the uncertainty in the input. In LP, we use
input-output data to learn the computational model.
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Some advantages in the application of (inverse) UQ

• Multiple real-life problems and phenomena are subjected to uncertainty.

• UQ can be used to assess the sensitivity of the computational model to perturbations of the
governing assumptions.

• Models are imperfect (often build by approximations or discretizations), data is noisy and
sparse. UQ allows us to systematically model those.

• Predictions obtained by computational models are only meaningful in the context of UQ.

• UQ supports decision-making.

• On an philosophical level: “...It’s a blessing, because it pushes us to broaden our understand-
ing of reality and innovate”.
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Some difficulties in the application of (inverse) UQ

▶ Uncertain parameters are represented as random functions whose discretization result in
high-dimensional parameter spaces (large scale problems; dimension d > 104).

▶ Uncertain parameters are represented as random functions with inherent discontinuities.

▶ The system of interest is represented with a nonlinear model.

▶ Evaluation of the computational model is expensive.

▶ Evaluation of the gradient of the computational model is prohibitive.

▶ On an philosophical level: “...It’s a curse, because it makes us believe and act like we known
more than we actually do”.
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Motivating example I: structural dynamics

• System: the equation of motion

ẍ(t) + 2ξωẋ(t) + ω2x(t) = −a(t).

• Data: recording a set of seismograms
at Earth’s surface.

• Inference: structural parameters ξ, ω
based on the seismic acceleration a(t).
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Motivating example II: ice sheet flow6

• System: nonlinear Stokes ice sheet model

−∇ · (2η(u)ε̇u − I p) = ρ g in Ω
∇ · u = 0 in Ω

Tσun + exp(β)Tu = 0 on Γ

• Data: current ice sheet geometry and sur-
face ice flow velocity.

• Inference: log basal sliding coefficient β.

6 T. Isaac et al. “Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction
for large-scale problems, with application to flow of the Antarctic ice sheet”. In: Journal of Computational Physics 296 (2015),
pp. 348–368.
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Motivating example III: X-ray computed tomography

• System: Lambert–Beer’s law:

y(θ, τ) = − ln
(

Id(θ, τ)
Is

)
=

∫
ℓθ,τ

x(s) ds.

• Data: collection of projections y
taken during the scanning process
(sinogram).

• Inference: discretized attenuation
coefficients x.
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Our target examples

In this course, we will apply UQ methods to the following one-dimensional domain applications:

• Elliptic equation.

• Signal deconvolution.
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Our target examples: elliptic PDE

• We consider inference of a permeability field using observations of the pressure measured at
specific locations. We define an idealized aquifer on the domain D = [0, 1].

• For a given permeability x(t, ω) and source term s(t), the pressure y(t, ω) follows the stochas-
tic elliptic equation:

∂

∂t

(
x(t, ω)∂y(t, ω)

∂t

)
= −s(t), t ∈ D

x(t, ω) ∂y

∂t

∣∣∣∣
t=0

= −F (ω), y(1, ω) = 1.

(1)

The permeability x(t, ω) and pressure solution y(t, ω) are random fields defined on D × Ω,
where (Ω, F ,P) is a probability space.
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Our target examples: elliptic PDE
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Figure: Some field realizations. Left: permeability x. Right: pressure y.
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Our target examples: deconvolution

• Deconvolution is concerned with the restoration of a signal or image from a recording which
is resolution limited and corrupted by noise.

• The mathematical model for convolution of a random signal on a one-dimensional spatial
domain D = [0, 1], can be written as a stochastic Fredholm integral equation of the first
kind:

y(t, ω) =
∫ 1

0
a(t, t′)x(t′, ω) dt′, t, t′ ∈ D, (2)

where x(t, ω) denotes the convolved signal random variable and we assume a deterministic
convolution kernel a.

• After discretizing the signal domain into N components, the convolution model can be
expressed as an stochastic system of linear equations y(ω) = Ax(ω).
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Our target examples: deconvolution
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Figure: We attempt at finding the sharp signal (left), using data from a blurred signal (right).
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