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1) Probability recap: introduction
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Probability theory: basic timeline

e Pierre-Simon Laplace (1814) -
Théorie analytique des probabilités.

e Henri Poincaré (1896) - Calcul des
probabilités.

e Andrey N. Kolmogorov (1933) -
axiomatic foundation of probability
theory.

e Harold Jeffreys (1939) - revival of
the Bayesian view of probability.

e Richard T. Cox (1946) - laws of
“logical” probability theory.

§ 1. Axioms®

Let & be a collection of elements §, 4, {, . . ., which we shall call
elementary events, and § a set of subsets of E; the elements of
the set § will be called random events.

L. % is a field® of sets.

11. % contains the set E.

IIL. To each set A in § is assigned a non-negative real number
P(A). This number P(A) is called the probability of the event A.

IV. P(E) equals 1.

V. If A and B have no element in common, then

P(A+B) =P(A) +P(B)

A system of sets, , together with a definite assignment of
numbers P(A), satisfying Axioms I-V, is called a field of prob-
ability.

Our system of Axioms 1-V is consistent. This is proved by the
following example. Let E consist of the single element ¢ and let §
.| consist of E' and the null set 0. P(E) is then set equal to 1 and
|| P(0) equals 0.
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Why probability theory?

e Bertrand Russell, 1929 Lecture: “Probability is the most important concept in modern
science, especially as nobody has the slightest notion what it means”.
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Why probability theory?

e Bertrand Russell, 1929 Lecture: “Probability is the most important concept in modern
science, especially as nobody has the slightest notion what it means”.

e Probability theory: mathematical theory in charge of the analysis and modeling of random
phenomena.

» A or “experiment” is one that despite being performed under the same
determined conditions produces different results = coin toss, earthquakes.

» This is opposite to , whose results are always unique and predictable
= speed of light, intrinsic material parameters.
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Why probability theory?

e Bertrand Russell, 1929 Lecture: “Probability is the most important concept in modern
science, especially as nobody has the slightest notion what it means”.

e Probability theory: mathematical theory in charge of the analysis and modeling of random
phenomena.
» A or “experiment” is one that despite being performed under the same
determined conditions produces different results = coin toss, earthquakes.

» This is opposite to , whose results are always unique and predictable

= speed of light, intrinsic material parameters.

e Formal probability theory works with sets in a given space. Because of this we need to review
some relevant results from set theory.
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2) Probability recap: probability spaces

F. Uribe | LUT Universit



G Lt
N University

Elements of set theory: intro?
e A set is a collection of elements. A space 2 is the collection of all elements under consider-
ation.

o A point or atomic set is a set containing a single element, e.g., {5}. The entire space Q
itself is always a valid set, as is the empty set or null set (), which contains no elements at
all.

e Sets are often defined implicitly via an inclusion criterion. These sets are denoted with the
set builder notation, e.g.,, RT = {z ¢ R| z > 0}.

e There are three natural operations between sets: complement, union and intersection.

! M. Betancourt. Probability Theory (For Scientists and Engineers). https://betanalpha.github.io/assets/case_studies/

probability_theory.html. 2021.
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Elements of set theory: natural operations

0

C

Figure: Elementary set operations: complement, union and intersection (by rows).

Q Q Q
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Elements of set theory: o-algebras®

e The collection of all sets in a space (2, is called the P(£2). The power set is
massive; it contains the empty set, the entire space, all of the atomic sets, and more.

o Moreover, even if the space € is well-behaved (e.g., the real numbers), P(£2) can contain
some mathematically “pathological” elements (namely non-measurable sets). See this nice
video for a proof.

e We have to define a restriction: o-algebras are the patch that fixes the math.

2 M. Betancourt. Probability Theory (For Scientists and Engineers). https://betanalpha.github.io/assets/case_studies/

probability_theory.html. 2021.
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Elements of set theory: o-algebras?

e The collection of all sets in a space (), is called the P(£2). The power set is
massive; it contains the empty set, the entire space, all of the atomic sets, and more.

e Moreover, even if the space 2 is well-behaved (e.g., the real numbers), P(€2) can contain
some mathematically “pathological” elements (namely non-measurable sets). See this nice
video for a proof.

e We have to define a restriction: o-algebras are the patch that fixes the math.

o-algebra

Consider a restricted collection of sets in € that is closed under the three natural set
operations. Further, it is closed under a countable number of unions/intersections. Such
collection is called a o-algebra over the space .

® M. Betancourt. Probability Theory (For Scientists and Engineers). https://betanalpha.github.io/assets/case_studies/

probability_theory.html. 2021.
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Another important concept: measures

o Measures provide a mathematical abstraction for common notions like mass, distance/length,
area, volume, probability of events. Hence, they are directly related to Lebesgue integration.

e Recall that Q) might contain subsets that are so strange* that it is impossible to define a
geometrically reasonable notion of measure for them. Hence, o-algebras serve as the domains
for measures.

4
see, e.g., the Banach—Tarski paradox.
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Another important concept: measures

e Measures provide a mathematical abstraction for common notions like mass, distance/length,
area, volume, probability of events. Hence, they are directly related to integration.

e Recall that Q@ might contain subsets that are so strange that it is impossible to define
a geometrically reasonable notion of measure for them. Hence, o-algebras serve as the
domains for measures.

Measures (“soft definition”)

Let 2 be a set and F a o-algebra over 2. A function v from F to the extended real line is
called a measure, if it satisfies the following properties: (i) non-negativity, (ii) () =0,
(iii) countable additivity (o-additive).

F. Uribe | LUT Universit
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What is a probability space?
We define a probability space [3] as the triple (2, F,P), where
. ) is a non-empty set containing the outcomes of a random experiment

(elementary events),
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What is a probability space?
We define a probability space [3] as the triple (2, F,P), where

. ) is a non-empty set containing the outcomes of a random experiment
(elementary events),

. F is a collection of subsets of (2, satisfying: (i) @ € F and Q € F, (ii)) Ae F
implies that A° € F, and (iii) Ay, Ag,... € F implies that U2, A; € F. The elements of F
are called events (or measurable sets), and

F. Uribe | LUT Universit SCIP |9



§ Lt
N University

What is a probability space?
We define a probability space [3] as the triple (2, F,P), where

. ) is a non-empty set containing the outcomes of a random experiment
(elementary events),

. F is a collection of subsets of (2, satisfying: (i) @ € F and Q € F, (ii)) Ae F
implies that A° € F, and (iii) Ay, Ag,... € F implies that U2, A; € F. The elements of F
are called events (or measurable sets), and

. P is a mapping P : F — [0,1], such that (i) P is real and non-

negative, (i) P is o-additive, i.e., P[Us2, A;] = .2 P[A;], for mutually disjoint events A;
(consistent allocation), and (iii) P[@] = 0 and P[2] = 1 (lossless allocation).
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Probability space: example |

o Q) = {head, tail}, Q@ = {1,2,3,4,5,6}, and 2 = [a,b] C [0,00) are sample spaces for the
experiments of tossing a coin, rolling a dice and measuring daily rainfall.
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Probability space: example |

o Q) = {head, tail}, Q@ = {1,2,3,4,5,6}, and 2 = [a,b] C [0,00) are sample spaces for the
experiments of tossing a coin, rolling a dice and measuring daily rainfall.

e The o-algebra associated with the game in which one wins 10 and looses 5 for outcomes of
a die rolling experiment in {1,2} and {3,4,5,6} is F = {0, {1,2},{3,4,5,6},Q}.
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Probability space: example |

o = {head, tail}, Q = {1,2,3,4,5,6}, and Q = [a,b] C [0,00) are sample spaces for the
experiments of tossing a coin, rolling a dice and measuring daily rainfall.

e The o-algebra associated with the game in which one wins 10 and looses 5 for outcomes of
a die rolling experiment in {1,2} and {3,4,5,6} is F = {0, {1,2},{3,4,5,6},Q}.

e Finally, for the probability measure, we would map each event to the number of outcomes in
that event divided by 6. Hence, {1,2} would be mapped to 2/6=1/3, and {3,4, 5,6} would
be mapped to 4/6=2/3. °

Point/counting measures are used in the discrete space context; basically they count the number of elements in the set one is
measuring.
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Probability space: example Il

e Q0 ={0,1}, a binary sample space.

e In this case, the valid o-algebra is the entire power set® consisting of the empty set A; = (),
the atomic sets A, = 0 and A3 = 1, and the entire space A4 = Q.

o Finally, what probabilities can we assign to these sets? The axioms require that P[A4] =1,
and the complement rule then requires that IP[A;] = 0. We are free to assign any probability
to one of the atomic sets, so we can take P[A3] = p in which case the complement rule
requires that P[43] =1 —p.

® If we restrict ourselves to countable sets, then we can take F = P(£2) and we won't have any problems because for countable
Q, P(£2) consists only of measurable sets.
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Probability space: example I
e 0 =1{0,1,2,...} a sample space consisting of non-negative integers.
o F = {all subsets of Q} (power set of Q).
e We can define the probability measure, for any A € F
5k
P[A] = exp(—5) 3 7. (1)
keA
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Probability space: example I
e 0 =1{0,1,2,...} a sample space consisting of non-negative integers.
o F = {all subsets of Q} (power set of Q).
e We can define the probability measure, for any A € F
5k
P[A] = exp(—5) 3 7. (2)
keA

This probability triple represents a Poisson distribution with rate parameter 5.
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Probability space: example IV

e () =[0,1] a sample space consisting of real numbers in that interval.
o F = {all intervals contained in 2}, Borel sets on [0,1].
e We can define the probability measure, for any I € F, simply as the length of the interval

P[A] = length(I). (3)

F. Uribe | LUT Universit SCIP | 13



G Lt
N University

Probability space: example IV
e 2 =[0,1] a sample space consisting of real numbers in that interval.
o F = {all intervals contained in 2}, Borel sets on [0,1].
e We can define the probability measure, for any I € F, simply as the length of the interval

P[A] = length(I). (4)

This probability triple represents a uniform distribution” on [0,1], or Lebesgue measure on
[0,1]. More generally, the Lebesgue measure on Borel sets in RY, is given by

/\(((Ll,bl] X -0 X ((Ld,bdD = (bl—a1)~-~(bd—ad) Y oa; < b;. (5)

" This is a very simplified way of writing it, the proper construction requires more involved concepts such as, semialgebras, the
extension theorem, inner and outer measures, among others (the interested student can see, e.g., [4, Sec. 2.4]).
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Summary |

o As a rule of thumb, if the sample space Q is finite or countable, then F = P(Q), the
collection of all subsets of the sample space. If 2 is a Borel subset of the Euclidean space
R™, then F = B(), the Borel sets in R™ intersected with €.

e A probability distribution defined by Kolmogorov's axioms is completely specified by the
probability triple.

e We will see that probability is simply a positive and conserved quantity that we want to
distribute across a given space. The probability distribution defines a mathematically self-
consistent allocation of this conserved across ).

Basic definition

Probability theory is simply the study of an object, a probability distribution/measure
that assigns values between 0 and 1 to sets (and the transformations of that object).

F. Uribe | LUT Universit SCIP | 14
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3) Probability recap: random variables
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Random variable as measurable transformations

P X~ Y(B)] > P [B]

Q | ‘Q’

Figure: In measure-theoretic terms, the random variable X ‘pushes-forward’ the measure IP on (2 to a
measure Px on . In this general setting, we see that a random variable defines a new random
experiment with " as the new set of outcomes and F’ as the new collection of events.
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Random variables

e Once we have defined a probability distribution on €2, and a well-behaved collection of subsets
F, then we can consider how the probability distribution transforms when {2 transforms.

e Recall that €2 is the set of all possible outcomes of some random experiment. A random
variable assigns a numerical value to each of these outcomes.

Random variable

Given a probability triple (2, F,P), a (real-valued) random variable is a function X :
Q — R, such that X~1(B) € F, for every B € R (i.e., X is a measurable function).

F. Uribe | LUT Universit
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Random variables: example

Consider the experiment of rolling a fair dice:

O ={wi,wa,...,ws}, subindex is the number of dots in the face of the dice (6a)
F =P(Q) all possible subsets of € (6b)
Plw;] =1/6 counting measure. (6¢)

Definea RV X : Q — R by X(w,,) =0, if n is even and X (w,,) = 1, if n is odd. Note that
since the outcomes are random X takes the values 0 or 1, randomly.

F. Uribe | LUT Universit SCIP | 18
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Random variables: example
Consider the experiment of rolling a fair dice:
Q={w,wo,..., we}, subindex is the number of dots in the face of the dice (8a)
F =P(Q2) all possible subsets of €2 (8b)
Plw;] = 1/6 counting measure. (8¢)

Definea RV X : Q — R by X(w,) =0, if n is even and X (w,) =1, if n is odd. Note that
since the outcomes are random X takes the values 0 or 1, randomly. In this case, we have
P[X = 0] = Plws, wg,wg] = 1/2 (9a)
]P[X = 1] = ]P[wl,OJ3,LU5] = 1/2 (gb)

since X takes the value of 1 with probability p and the value of 0 with probability 1 — p
(p =1/2), it is an example of a Bernoulli RV, X ~ Bern(1/2).

F. Uribe | LUT Universit SCIP | 18
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4) Probability recap: probability distributions
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Probability distribution

o We want to compute probabilities of events associated to a random variable X, defined on
(Q, F,P). Instead of considering a particular value of X, we describe the of the
values it takes.
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Probability distribution

o We want to compute probabilities of events associated to a random variable X, defined on
(Q, F,P). Instead of considering a particular value of X, we describe the distribution of the
values it takes.

e Such probabilities are specified by the distribution/law/measure of X, which is defined as
Px(B):=PoX '(B)=P[X € B], Bc¢cBR), (12)

where B(R) is the collection of Borel sets on R, and the resulting (R, B(R),Px) is valid
probability space.

o The distribution/law/measure of X can be studied using its
(CDF). The CDF is defined as

Fx(z) =P[X <z]=Plw: X(w) <z] foranyxzecR. (13)

F. Uribe | LUT Universit SCIP | 20
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Probability distribution functions

e The following are the main properties of the CDF:
» increasing, a < b = Fx(a) < Fx(b).
» right-continuous, 1immﬂr+ Fx(z) = Fx (o).
0

» satisfies, limy— oo Fx () = 0,limy o0 Fx(x) = 1.

F. Uribe | LUT Universit



G Lt
N University

Probability distribution functions

e The following are the main properties of the CDF:
» increasing, a < b = Fx(a) < Fx(b).
» right-continuous, lim .+ Fx(x) = Fx(zo).
0

» satisfies, limgz—, — oo Fix(z) = 0,limz 00 Fx(z) = 1.

e Note that F'x and P “correspond to each other”. By definition of the CDF, the probability
that X lies in the semi-closed interval (a, b], where a < b, is8

Pla < X <} = Fx(b) - Fx(a) = P[(a,b]], (14)

this is because the intervals (a, b] are in particular Borel sets on R.

8
R. B. Ash and C. Doléans-Dade. Probability and measure theory. 2nd ed. Harcourt/Academic Press, 2000.
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Probability density functions

e Mass/density: “how much more likely is that the random variable would be close to one
sample compared to others”

» For discrete (or simple): X takes on only a finite number of different values x1,x2, ..., then
we can define its probability mass function (PMF), 7x () = P[X = z]. In this case, the CDF
and the PMF are connected by the relation

Fx(z) =P[X < z] Z P[X Z mx (24). (15)

z; <x z;<x
» For continuous: If Fx is absolutely continuous, then we can define its probability density
function (PDF), which is a Lebesgue-integrable function 7x (x) such that

x

Fx(z) =P[X < g :/ mx (t) dt; (16)

oo}

the PDF is equal to the derivative of the CDF almost everywhere (7(z) = dF(x)/dz).

F. Uribe | LUT Universit SCIP
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Other probability functions

e Quantile function (inverse CDF): If the CDF is strictly increasing and continuous then
F~1(p),p € [0,1], is the unique real number x, such that F(z) = p. More descriptively, a
p-quantile is the point where we have accumulated p probability.

» The most common quantile is 0.5, or the median, which quantifies a sense of where a probability
distribution concentrates (other than the mean).

» Tail quantiles, such as 0.05 and 0.95, quantify a sense of the spread of a probability distribution
(other than the variance).

e Tail distribution (complementary CDF): Fx(x) = P[X > ] = 1 — Fx(z). This is used
when computing the probabilities of rare/tail events are required.

F. Uribe | LUT Universit
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5) Probability recap: main statistics
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Expected values
o In general, if X is a random variable defined on a probability space (2, F,IP), then the
9 of X, is defined as the integral

/X dP(w /LdIPX( ). (17)

e In words, the expected value of X with respect to IP on €2 is equal to the expected value of
its realized value with respect to the distribution/measure Px on R.

» For discrete:
k
= 2 P[X =u]. (18)
i=1

» For continuous: -
E[X] :/ v (2) da. (19)

—0Q

9
Back in 1814, Laplace used to call it: mathematical hope.
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Expected values

o Oftentimes, we use the notation pux = E[X]. Sometimes, we call the expected value of X,
with respect to the Lebesgue measure probability triple, its Lebesgue integral.

e Consider the random variables X, Y and scalars a, b, then the following statements about
the expectation operator hold!®:

The expectation is linear, E[aX + bY] = aE[X] + bE[Y].

The expectation is order-preserving, if X <Y, then E[X] < E[Y].

The expectation follows the generalized triangle inequality, |E[X]| < E[|X]].

If X and Y are independent, then E[XY] = E[X]E[Y].

vy vy vy

e In general, the kth moment of X is given by

E[X"] = /Oo 2 7y (x) de. (20)

J —oo

10
J. S. Rosenthal. A first look at rigorous probability theory. 2nd ed. World Scientific Publishing Company, 2006.
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Variance

e Besides the expected value, the second central moment or of the random variable
X, denoted V[X], is also important. This function gives information about the variation of
X and it is defined as V[X] = E[(X — E[X])?] = E[X?] — 4%.

e Some properties include!’:
» 0 < V[X] <E[X?],
» V[aX +0bY] = a>V[X]+b*V[Y]+2abCov [X, Y], where Cov [X, Y] is the covariance between
X and Y.
» The positive square root ox = 1/ V[X] is called the of X.

e The mean and the variance do not give, in general, enough information to completely specify
the distribution of a random variable. However, they may provide useful bounds.

11
J. S. Rosenthal. A first look at rigorous probability theory. 2nd ed. World Scientific Publishing Company, 2006.
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Median and MAD

o When the first two moments of a random variable do not exist, location and scale charac-
teristics of its distribution can be summarized using for example, function of the median.

e If X is a random variable, then a median of its distribution is any value med such that
P[X > med] > 1/2. This value is not necessarily unique.

e If the distribution of X has an unique med, then the median absolute deviation is defined
as:

MAD(X) = Median(|X — med|). (21)

F. Uribe | LUT Universit
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The story so far...

o Formal probability theory is simply the study of (i) probability measures that distribute a finite
and conserved quantity across a space, (ii) the expectation values that such a distribution
induces, (iii) and how the distribution behaves under transformations of the underlying space.

e Still, those concepts have so far been presented in the abstract without any concrete exam-
ples to provide context. Why? Because, unfortunately, probability distributions cannot be
explicitly defined in most problems!

F. Uribe | LUT Universit
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The story so far...

e Formal probability theory is simply the study of (i) probability measures that distribute a finite
and conserved quantity across a space, (ii) the expectation values that such a distribution
induces, (iii) and how the distribution behaves under transformations of the underlying space.

e Still, those concepts have so far been presented in the abstract without any concrete exam-
ples to provide context. Why? Because, unfortunately, probability distributions cannot be
explicitly defined in most problems!

e Fortunately, most probabilistic systems admit representations that faithfully recover all prob-
abilities and expectation values on demand and hence completely specify a given probability
distribution.

e In particular, density representations exploit the structure of €2 to fully characterize a prob-
ability distribution with special functions.

F. Uribe | LUT Universit
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6) Probability recap: joint distributions
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Conditional probability and independence

e A common problem is the computation of the probability of an event, given that another
event B has occurred. This leads to the definition of conditional probability:

P[AN B

PlA| Bl = =5

. (22)

e This can be generalized to the product rule of probability (or chain rule), which states that
for any sequence of events Ay, ..., Ay,

P[A; - Ap] = P[A] P[Ay | A1]P[A3 | A1 As] - P[Ay | Ay -+ Anq]. (23)

e Informally, events or random variables are independent, if they do not affect each other’s
probabilities, hence

P[A;---A,] = P[A1] P[As]---P[A,], holds for arbitrary permutations too.  (24)

F. Uribe | LUT Universit SCIP | 31
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Conditional probability and independence
e Suppose that By, ..., B, is a disjoint partition of €2 and their union is 2. By the sum rule
P[A] = > P[A | B;], and hence, by the definition of conditional probability we obtain
the :
P[A] =) P[A| B)|P[B]. (25)
i=1
o Combining eq. (25) with the definition of conditional probability, we obtain
P[A | B;|P[B;

Yo PIA| BiP[B]

F. Uribe | LUT Universit SCIP | 32



§ Lt
N University

Example

e Let A be the event of a positive diagnostic of a rare disease, and B be the event that a
person gets a rare disease (i.e., is sick), which has probability P[B] = 0.001. The probability
that a positive diagnostic is correct given the person is sick, is P[A | B] = 0.99. However,
there exists a false-positive probability of P[A | =B] = 0.05.

Therefore, given a positive test result, what is the probability that the person is actually
sick?

F. Uribe | LUT Universit SCIP | 33
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Example

e Let A be the event of a positive diagnostic of a rare disease, and B be the event that a
person gets a rare disease (i.e., is sick), which has probability P[B] = 0.001. The probability
that a positive diagnostic is correct given the person is sick, is P[A | B] = 0.99. However,

=

there exists a false-positive probability of IP[A | =B] = 0.05.

Therefore, given a positive test result, what is the probability that the person is actually
sick?

P[A | B|P[B] 0.09 - 0.001

P[A]  _ PA|BIPB+PA|-BPE Y

P[B | A] =

F. Uribe | LUT Universit SCIP | 33
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Joint distributions

o Consider a d-dimensional random vector on a probability space is the function X : Q — R%.
Random vectors can be regarded as d-tuples of random variables, i.e., X = [X3,..., X4],
where each X if the projection of X onto the i-th coordinate space.

e The joint CDF of the random vector X is defined analogously from as

Fx(m):IP[le(w)le, i:1,...,d]:IP[X1Sl‘lﬁXgS]JQm"'deS%d},

where © = [z, T,...,14] € R% The associated joint PDF can be obtained as
O Fx(x1,79,...,24q)
= . 27
x (@) 0x10x9 -+ 0xyq (27)
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Marginal and conditional distributions

e The , give the probabilities for any of the individual variables
without reference to the values of the other ones. The conditional probability distributions,
which give the probabilities for any grouping of the random variables, conditional on particular
values of the remaining ones.

e The conditional PDF between two random variables, say X; given the occurrence of a value
x; of X;, is given by

TrX,',XJ'('T’L‘?'Tj)

foranyi,j=1,...,d,
ﬂ-Xi(‘ri)

X, x, (@) | i) =

where each 7x, (z;) represents the PDF of the random variable X, which is com-
puted by integration (marginalization) of the joint mx, x, (2i, z;) with respect to Xj.
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Marginal and conditional distributions

The conditional PDF 7x | x,(z; | #;) can be interpreted as a normalized . For a

fixed ; = ¢, the function 7x, x; (¢, x;) is a profile of the joint PDF, since it equals the
intersection of the surface mx, x; (z;,7;) by the plane x; = c.

F. Uribe | LUT Universit



§ Lt
N University

Marginal and conditional distributions

m(zs) Joint and Marginals 10-2 Conditionals on x» Conditionals on z
2.0
1.5 =
® |
£ 1.0 = l
= 1
0.5 1 5 e
E U
0.0 -7
T T T T T

1.5

Figure: Lines along which the profiles are taken are shown. The marginals are depicted by histograms at
each side of the 2D plot. Three conditionals of z1 given z2 = [0.5,1.0, 1.5] are shown in green. The
associated conditionals for zo given z1 = [0.5, 1.0, 1.5] are shown on purple.
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The multivariate Gaussian distribution

e A d x 1 random vector X is said to have a Gaussian distribution, if a™ X is a Gaussian
random variable for any a € R<.

e Multivariate Gaussian distributions are parameterized by their mean vector  and covariance
matrix X. The multivariate Gaussian PDF is given by

rx(x) = m exp (—;(a: —p)"S (2 - u)) . (28)

e Not every multivariate Gaussian has a density (when X is singular). These type of distri-
butions still have application in different problems and they are oftentimes called intrinsic
Gaussian distributions.
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7) Probability recap: final aspects

F. Uribe | LUT Universit



§ Lt
N University

Transformations: linear

o Let = a column vector in R%, and A € R¥"™ a matrix. The map  — y, with y = Ax
is called a linear transformation. Now, consider a random vector X = [X1,.. .,Xd]T, and
let Y = AX, then Y is a random vector in R™.

e If X has a mean vector pux and covariance matrix X x x, those of the random vector
Y = AX are given by:

my = Apx Syy = AZyxAl. (29)

e More generally, if A is invertible. We have that:

1
Ty (y) = m
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Transformations: general

e In many cases, we encounter problems given by functions of random variables. For instance,
consider the random vector Y = f(X). Suppose than f is invertible and, both the function
and its inverse, are differentiable (i.e., f is a diffeomorphism).

e Then, the density function of Y can be obtained as
Ty (y) = mx (f 7 () [Ty (S )] (31)

where |J,(f~1)| is the absolute value of the determinant of the Jacobian matrix J,(f~!)
at y of the transformation f~!. Here, J,(f~!) has elements J; ; = 9f; ' /0y;.

e Popular transformations involve a process called standardization (also called whitening in
case of a Gaussian), where the distribution of the random variable is transformed to an
analogous distribution but with zero mean and unit variance.
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Some useful inequalities
e If X is a non-negative random variable, then for all z > 0, we have the

PIX > 4] < “% (32)

(knowing that E[1 4] = P[A] and using the trick 1 = 1 x>, + Lx<z).

e If we also know the variance of X, we can give a tighter bound. Namely, for any X, we have
the

2
g
P(X — x| 2 0] < 5. (3)

e We use these two inequalities to show the laws of large numbers, which area pivotal concepts
in the Monte Carlo method.
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Good references on rigorous probability theory...

Highly recommended:

Joel A. Tropp (2023) - Probability Theory & Computational Mathematics. https://tropp.
caltech.edu/notes/Tro23-Probability-Theory-LN.pdf

J. S. Rosenthal (2006) - A first look at rigorous probability theory. 2nd ed. World Scientific
Publishing Company.
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