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Why variance reduction?

• We have seen that standard MC typically has an error variance of the form σ2/n. We get a
better answer with larger n, but the computing time grows with n.

• Sometimes we can find a way to reduce σ instead. We construct a new Monte Carlo
problem with the same answer as our original one but with a lower σ =⇒ variance reduction
techniques.

• We can group the methods in the following categories:
Type-1: antithetic sampling, stratification, and common random numbers.
Type-2: conditioning and control variates.
Type-3: importance sampling.

• These methods are also used in the context of inference with MCMC.

F. Uribe | LUT University SCIP | 1



Why variance reduction?
• We have seen that standard MC typically has an error variance of the form σ2/n. We get a

better answer with larger n, but the computing time grows with n.

• Sometimes we can find a way to reduce σ instead. We construct a new Monte Carlo
problem with the same answer as our original one but with a lower σ =⇒ variance reduction
techniques.

• We can group the methods in the following categories:
▶ Type-1 (using clever samples): antithetic sampling, stratification, and common random num-

bers.
▶ Type-2 (using things we know): conditioning and control variates.
▶ Type-3 (using auxiliary densities): importance sampling and its variants.

• These methods are also used in combination with MCMC.
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This lecture...

• The lecture is based on multiple references. However, we mostly follow Chapters 8 and 9 of
the book by Art Owen1, which is freely available online.

1
A. B. Owen. Monte Carlo theory, methods and examples. artowen.su.domains/mc/, 2018.
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Variance reduction: type-1 methods (“using clever samples”)
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Antithetic sampling: intro

• Random variables X, Y on the same probability space are antithetic, if they have the same
distribution and their covariance is negative.

• When we are using Monte Carlo averages of quantities f(xi) then the randomness in the
algorithm leads to some error cancellation. In antithetic sampling, we try to get even more
cancellation.

• An antithetic sample x̃ is one that gives the opposite value of f(x), i.e., being low when
f(x) is high and vice versa. Ordinarily, we get an opposite f by sampling at a point x̃ that
is somehow opposite to x.

• Let µ = E[X] for X ∼ π, where π is a symmetric density on Rd. Here, symmetry is with
respect to reflection through the center point c of Rd.
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Antithetic sampling: estimator

• If we reflect x through c, we have x̃− c = −(x− c), and we get the point x̃ = 2c−x. For
basic examples, when π = N (0, Σ) then x̃ = −x. When π = U(0, 1)d, we have x̃ = 1 − x
(componentwise).

• The antithetic sampling estimate of µ is:

µ ≈ µ̂anti = 1
n

n/2∑
i=1

f(xi) + f(x̃i), (1)

where xi
idd∼ π and n is an even number. This estimator is also unbiased.

• The rationale for antithetic sampling is that each value of x is balanced by its opposite x̃,
satisfying (x + x̃)/2 = c.
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Antithetic sampling
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Figure: Five points and their antithetics. Left: from a standard uniform. Right: from a standard
Gaussian.
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Antithetic sampling: variance

• Whether the balance is helpful or not depends on f . If f is nearly linear, we could obtain a
large improvement.

• The variance of antithetic sampling is:

V[µ̂anti] = V

 1
n

n/2∑
i=1

f(xi) + f(x̃i)

 = n/2
n2 V

[
f(X) + f(X̃)

]
(2)

= 1
2n

(
V[f(X)] +V

[
f(X̃)

]
+ 2Cov

[
f(X), f(X̃)

])
= σ2

n
(1 + ρ) (3)

• Since −1 ≤ ρ ≤ 1, we obtain 0 ≤ σ2(1 + ρ) ≤ 2σ2. In the best case, antithetic sampling
gives the exact answer from just one pair of function evaluations. In the worst case, it
doubles the variance.
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Antithetic sampling: when it works?
• Hence, the variance of standard MC and antithetics can be written as:[

V[µ̂]
V[µ̂anti]

]
= 1

n

[
1 1
2 0

] [
σ2

e

σ2
o

]
; (4)

antithetic sampling eliminates the variance of fo but doubles the contribution from fe.

• Tip: antithetic sampling reduces the variance if ρ < 0 (e.g., monotone function), or equiv-
alently if σ2

o > σ2
e . This analysis is appropriate when the most of the computation is in

evaluating f .

• Because antithetic samples have dependent values within pairs. We can define yi = fe(xi) =
(f(xi) + f(x̃i))/2, for i = 1, . . . , m = n/2, then

µ̂anti = 1
m

m∑
i=1

yi, σ2
anti = 1

m − 1

m∑
i=1

(yi − µ̂anti)2. (5)
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Antithetic sampling: example (I)

Consider the expected logarithmic return of a portfolio:

• There are K stocks and the portfolio has proportion λk ≥ 0 in stock k, with
∑K

k=1 λk = 1.

• The expected logarithmic return is defined as

µ(λ) = E

[
log
(

K∑
k=1

λk exp(Xk)
)]

, (6)

where X ∈ RK is the vector of returns.

• If one keeps reinvesting/rebalancing the portfolio at N regular time intervals then, by the
LLN, our fortune grows as exp(Nµ + O(N)), assuming of course that the X for each time
period are idd.
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Antithetic sampling: example (II)

• The log-optimal choice λ is the allocation that maximizes µ. Finding a model for the
distribution of X and then choosing λ are challenging problems. We focus on the problem
of evaluating µ(λ) for a given λ.

• We take λk = 1/K with K = 500. We also suppose that each marginal distribution is
Xk ∼ N (δ, σ2) but that X has the t(0, ν, Σ) copula. Here δ = 0.001 and σ = 0.03 (≈ one
week time frame). And ν = 4 with covariance is Σ = ρ1K1T

K + (1 − ρ)IT
k for ρ = 0.3.

• Letting f(X) = log
(∑K

k=1 exp(Xk)/K
)

, the MC estimate is µ̂ = 1/n
∑n

i=1 f(Xi).

• The antithetic to Xi has components X̃ik = 2δ − Xik.

• Continue on code...
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Stratified sampling: intro

• The idea in stratified sampling is to split up the domain D of X into separate regions, take
a sample of points from each region, and combine the results.

• We might do better by oversampling within the important strata and undersampling those
in which f is nearly constant.

• To use stratified sampling, we must know the sizes ωj = P[X ∈ Dj ] of the strata, and we
must also know how to sample X ∼ πj for j = 1, . . . , J .

• When we are defining strata, we naturally prefer ones we can sample from. If however, we
know ωj but are unable to sample from πj , then we use post-stratification.
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Stratified sampling

Figure: Left: 20 points in [0, 1]2 of which 5 are sampled uniformly from within each quadrants (J = 4).
Right: 25 points from a standard Gaussian. There are 4 concentric rings separating the distribution into
J = 5 equally probable strata with 3 points sampled from each.
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Stratified sampling: estimator

• Let Xij ∼ πj for i = 1, . . . , nj and j = 1, . . . , J be sampled independently. The stratified
sampling estimate is

µ ≈ µ̂strat =
J∑

j=1

ωj

nj

nj∑
i=1

f(Xij); (7)

this estimator is also unbiased.

• As done previously for antithetic sampling, we now study the variance of the estimator µ̂strat
to determine when stratification is advantageous, and to see how to design an effective
stratification.

• We define µj = Eπj
[f(x)] and σ2

j = Vπj
[f(x)] to be the jth stratum mean and variance,

respectively.
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Stratified sampling: variance
• The variance of the stratified sampling estimate is

V[µ̂strat] =
J∑

j=1
ω2

j

σ2
j

nj
; (8)

an immediate consequence is that V[µ̂strat] = 0 for integrands f that are constant within
strata Dj .

• The variance of f(X) can be decomposed into within- and between-stratum components2

σ2 = V[f(X)] = E[V[f(X | Z)]] +V[E[f(X | Z)]] , Z = 1, . . . , J (9a)

=
J∑

j=1
ωjσ2

j +
J∑

j=1
ωj(µj − µ)2 = σ2

A + σ2
B ; (9b)

2
See this Link to check this property of the variance.
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Stratified sampling: post-stratification (proportional)
• Post-stratification: if we know ωj but we cannot sample X ∼ πj . The idea is to sample
Xi ∼ π and assign it to their strata afterwards. The estimators remain the same.

• The main difference is that nj are now random. A natural choice for stratum sample sizes
is proportional allocation, nj = nωj . In this case, the estimators reduce to

µ̂strat,p = 1
n

J∑
j=1

nj∑
i=1

f(Xij) σ2
strat,p = 1

n

J∑
j=1

ωjσ2
j . (10)

• We can compare iid and proportional stratification in one equation[
V[µ̂]

V[µ̂strat,p]

]
= 1

n

[
1 1
1 0

] [
σ2

A

σ2
B

]
; (11)

• Tips: a good stratification scheme is one that reduces the within-stratum variance σ2
A, ideally

σ2
B ≫ σ2

A. If sampling from πj is slower than sampling from π, we loose any efficiency gain
from stratification.
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Stratified sampling: post-stratification (non-proportional)

• A proportional allocation is not necessarily the most efficient. Optimal sample allocation
can be achieved using Neyman allocation, and the formulation allows for unequal sampling
costs from the different strata.

• To minimize variance, we use
nj ∝ ωjσj√

cj
, (12)

where cj is the (expected) cost to generate X from πj and then compute f(X).

• Non-proportional allocations carry some risk. The optimal allocation can be worse than the
proportional allocation discussed before.

• There are also results on how to construct optional strata. In general, we want strata within
which f is as flat as possible.
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Stratified sampling: example (I)

Compound Poisson models (random process with jumps) are commonly used for rainfall:

• The number of rainfall events (storms) in the coming month is S ∼ Poi(λ) with λ = 2.9.

• The depth of rainfall in a storm s is ds ∼ Weib(k, σ) with shape k = 0.8 and scale σ = 3
(cm) and the storms are independent.

• If the total rainfall is below 5 centimeters then an emergency water allocation will be imposed.
The total rainfall is X =

∑S
s=1 ds taking the value 0 when S = 0.

• It is easy to get the mean and variance, but here we want P[X < 5], that is E[f(X)] where
f(X) = 1X<5.

• Continue in code...
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Stratified sampling: example (II)
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Figure: 1000 simulations of the compound Poisson model for rainfall. We define 7 strata.

F. Uribe | LUT University SCIP | 18



F. Uribe | LUT University SCIP | 18



Common random numbers: intro and estimator

• Suppose that f and g are closely related functions and that we want to find E[f(x) − g(x)]
for x ∼ π.

• Maybe f(x) = h(x;θ) with a parameter θ ∈ Rm. To study its effect, we look at g(x) =
h(x; θ̃), for some θ̃ ̸= θ.

• Because E[f(X) − g(X)] = E[f(X)] − E[g(X)], we have two options:

D̂com = 1
n

n∑
i=1

f(Xi) − g(Xi), D̂ind = 1
n1

n1∑
i=1

f(Xi1) − 1
n2

n2∑
i=1

g(Xi2), (13)

where Xi ∼ π (left: common random numbers (CRN)) and Xij ∼ π (right: independent
random numbers).
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Common random numbers: variance

• Taking n = n1 = n2, the sample variances are :

V
[
D̂com

]
= 1

n

(
σ2

f + σ2
g − 2ρσf σg

)
, V

[
D̂ind

]
= 1

n

(
σ2

f + σ2
g

)
. (14)

• When ρ > 0, we are better off using common random numbers. Retaining some common
random numbers requires considerable care in synchronization.

• The same problem arises if we are comparing E[f(X)] for X ∼ π and E
[
f(X̃)

]
for X̃ ∼ π.

• Application: CRN applies when we are comparing two or more alternative configurations
(of a system) instead of investigating a single configuration.
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Common random numbers: couplings

• Example: if a first simulation has Xi
idd∼ N (µ, σ2) and a second has X̃i

idd∼ N (µ̃, σ̃2), then
we can sample Zi

idd∼ N (0, 1) and use

D̂com = 1
n

n∑
i=1

f(µ + σZi) − f(µ̃ + σ̃Zi). (15)

• More generally, when Xi is generated via a transformation T (Ui; θ) of Ui ∼ U(0, 1)d, then
we can average f(T (Ui; θ)) − f(T (Ui; θ̃)).

• The construction above is a coupling of the random vectors X and X̃. Any joint distribution
on (X, X̃) with X ∼ π and X̃ ∼ π̃ is a coupling.
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Common random numbers: implementation

• We want to estimate µj = E[h(X; θj))], for j = 1, . . . , m and using n random inputs
{Xi}n

i=1. In the simplest case, m = 2 and we are interested in µ1 − µ2.

• We can run a nested loop over samples indexed by i and parameter values indexed by j.
There are two main approaches that we can take, depending on which is the outer loop.

• CRN requires synchronization of the random number streams, which ensures that in addition
to using the same random numbers to simulate all configurations, a specific random number
used for a specific purpose in one configuration is used for exactly the same purpose in all
other configurations.
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Common random numbers: algorithms

Algorithm 1: Version 1: common random numbers
1 setseed(seed);
2 µ̂j = 0, 1 ≤ j ≤ m;
3 for i = 1 to n do
4 Xi ∼ π;
5 µ̂j = µ̂j + h(Xi; θj), 1 ≤ j ≤ m;
6 end
7 µ̂j = µ̂j/n, 1 ≤ j ≤ m;

Algorithm 2: Version 2: common random numbers
1 for j = 1 to m do
2 setseed(seed);
3 µ̂j = 0;
4 for i = 1 to n do
5 Xi ∼ π;
6 µ̂j = µ̂j + h(Xi; θj);
7 end
8 µ̂j = µ̂j/n;
9 end
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Variance reduction: type-2 methods (“using things we know”)
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Conditioning: intro and estimator
• Sometimes we can do part of the problem in closed form, and then do the rest of it by MC

or some other numerical method.

• Assume that X ∈ Rk and Y ∈ Rd−k are random vectors and we want to estimate
E[f(X,Y )]. The standard estimator is µ̂ = 1/n

∑n
i=1 f(Xi,Yi), where (Xi,Yi) ∈ Rd

are independent samples from the joint distribution.

• Define h(x) = E[f(X,Y ) | X = x], then we can also estimate3:

µ̂cond = 1
n

n∑
i=1

h(Xi), (16)

where Xi are sampled independently from the distribution of X. This method is called
conditioning or conditional Monte Carlo.

3
Note that E[f(X, Y )] = E[E[f(X, Y ) | X]] = E[h(X)].
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Conditioning: variance
• The variance of the conditional MC estimator is:

V[µ̂cond] = 1
n
V[h(X)] = 1

n
V[E[f(X,Y ) | X]] . (17)

• From the properties of the variance, we know:

V[f(X,Y )] = E[V[f(X,Y ) | X]] +V[E[f(X,Y ) | X]] ; (18)

hence, conditional Monte Carlo cannot have higher variance than crude MC sampling of f .

• Conditioning is a special case of de-randomization which is sometimes called Rao–Blackwe-
llization.

• De-randomization by conditioning always reduces variance, it is not always worth doing. We
could find our estimate is less efficient, if computing h costs much more than f .
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Conditioning: example
• Let C = {(x, y) | a ≤ x ≤ b, 0 ≤ y ≤ f(x)} and assume that f(x) ≤ c holds for x ∈ [a, b].

Then the MC estimate of the integral is

v̂ol(C) = c(b − a)
n

n∑
i=1

1Yi≤f(Xi), (Xi, Yi) ∼ U([a, b] × [0, c]). (19)

• The conditional expectation is:

h(x) = E[f(X, Y ) | X = x] = 1
πX(x)

∫ ∞

−∞
1Y ≤f(x)πXY (x, y) dy = f(x)

c
. (20)

• Conditioning yields the estimate:

v̂ol(C) = c(b − a)
n

n∑
i=1

f(Xi)
c

= (b − a)
n

n∑
i=1

f(Xi). (21)
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Conditioning: final comments

• Conditioning can be used in combination with other variance reduction methods. The most
straightforward way is to apply those other methods to the problem of estimating E[h(X)].

• The combination of conditioning with stratified and/or antithetic sampling is simple, provided
that the distribution of X is amenable to stratification or has some natural symmetry that
we can exploit in antithetic sampling.

• Conditioning brings a dimension reduction in addition to the variance reduction, because the
dimension k of X is smaller than the dimension d of (X,Y ).

• In the Rao–Blackwell theorem, the quantity being conditioned on has to obey quite stringent
conditions. Those conditions are usually not needed in MC applications.
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Control variates: intro
• Control variates provide a way to exploit closed form results. With control variates we use

some other problem, quite similar to our given one, but for which an exact answer is known.

• Suppose first that we want to find µ = E[f(X)] and that we know the value θ = E[h(X)],
where h(X) ≈ f(X). Using the MC estimators for each of these quantities:

µ̂ = 1
n

n∑
i=1

f(Xi) θ̂ = 1
n

n∑
i=1

h(Xi) (22)

we can estimate µ, using the (unbiased) difference estimator:

µ̂diff = 1
n

n∑
i=1

(f(Xi) − h(Xi)) + θ = µ̂ − θ̂ + θ. (23)
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Control variates: estimators

• The variance of the difference estimator is

V[µ̂diff] = 1
n
V[f(X) − h(X)] . (24)

• If h is similar to f in the sense that the difference f(X) − h(X) has smaller variance than
f(X), we will reduce the variance. In this setting, h(X) is called the control variate.

• The difference estimator is not the only way to use a control variate. The ratio and product
estimators are also used:

µ̂ratio = µ̂

θ̂
θ µ̂prod = µ̂θ̂

θ
; (25)

however, the ratio and product estimators are usually biased.
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Control variates: regression estimator (I)
• By far the most common way of using a control variate is through the regression. For a

value β ∈ R, the (unbiased) regression estimator of µ is:

µ̂β = 1
n

n∑
i=1

(f(Xi) − βh(Xi)) + βθ = µ̂ − β(θ̂ − θ); (26)

note that β = 0 gives standard MC and β = 1 yields the difference estimator.

• The variance of this estimator is:

V[µ̂β ] = 1
n

(
V[f(X)] − 2βCov [f(X), h(X)] + β2V[h(X)]

)
. (27)

• Intuition: control variates create a new random vector Z = f(X) + β(h(X) − θ), that
allows us to leverage θ in order to compute E[f(X)] in an easier way.
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Control variates: regression estimator (II)

• We can find the optimal value of β as:

βopt = arg min
β

V[µ̂β ] = Cov [f(X), h(X)]
V[h(X)] and V

[
µ̂βopt

]
= σ2

n
(1 − ρ2); (28)

note that in the regression estimator, any control variate that correlates with f is helpful,
even one that correlates negatively.

• Since we do not know βopt in practice, it can be estimated as

βopt ≈ β̂ =
∑n

i=1(f(Xi) − µ̂)(h(Xi) − θ̂)∑n
i=1(h(Xi) − θ̂)2

; (29)

note that the estimator µ̂β̂ is no longer unbiased. But the bias is very small !
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Control variates: regression estimator (III)

• The estimated variance of µ̂β̂ is

σ̂2
β̂

= V
[
µ̂β̂

]
= 1

n2

n∑
i=1

(
f(Xi) − µ̂β̂ − β̂(h(Xi) − θ̂)

)2
. (30)

and a 99% confidence interval is µ̂β̂ ± 2.58 σ̂β̂ .

• The variance with a control variate is never worse than the MC one. Whether the control
variate is helpful ultimately depends on how much it costs to use it.

• A significant advantage of the regression estimator is that it generalizes easily to handle
multiple control variates. The potential value is greatest when f is expensive but is approx-
imately equal to a linear combination of inexpensive control variates.
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Control variates: example I

Let’s compute the integral:

I =
∫ π/4

0

∫ π/4

0
f(x, y) dx dy, (31)

where f(X) = f(x, y) = x2y2 sin(x + y) log(x + y).

We are going to use the control variate h(X) = h(x, y) = x2y2, for which we know the integral
is equal to θ = ((π/4)6)/9.

Continue in code...
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Control variates: example II
• Consider one of the target applications, where f(U) is the forward model solution at location

L/2 and U ∈ R3 is standard Gaussian.

• We can define a control variate to estimate the mean E[f(U)]. For instance, a linearization
of the map U 7→ f(U). This coarse model Y = h(U), is given by a multivariate linear
regression:

Yi = c0 +
d∑

j=1
cjUi,j + ηi, i = 1, . . . , n (32)

here, Yi is the response for the i-th observation, c0 is the regression intercept, cj is the j-th
predictor regression, Xi,j is the j-th predictor for the i-th observation, and ηj is a Gaussian
error term. Here, n is the number of observations used to train the regression.

• Using the ordinary least squares, the coefficients are c = (UTU)−1UTY . The mean of the
control variate is θ = E[Uc] = c0.
Continue in code...
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Variance reduction: type-3 methods (“using auxiliary densities”)
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Importance sampling: intro

• In many applications, we want to compute µ = E[f(X)] where f(X) is nearly zero outside
a region A. The set A may have small volume, or it may be in the tail of the X distribution.
A plain MC sample from π could fail to have even one point inside A.

• We must get some samples from the region A. We do this by sampling from a distribution
that over-weights the important region, hence the name importance sampling (IS) [1].

• IS is more than just a variance reduction method. It can be used to study one distribution
while sampling from another. As a result, we can use IS as an alternative to acceptance-
rejection.

• IS is also an important prerequisite for sequential Monte Carlo, one of the state-of-the-art
Bayesian inference techniques.
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Importance sampling: intro

• Consider again the problem of finding Eπ[f(X)]:

µ =
∫
Rd

f(x)π(x) dx =
∫
Rd

f(x)π(x)
πbias(x) πbias(x)dx = Eπbias

[
f(x) π(x)

πbias(x)

]
, (33)

where πbias is the so-called importance or biasing density (supp(f(x)π(x)) ⊆ supp(f(x)
πbias(x))). Moreover, the adjustment factor π(x)/πbias(x) is called the likelihood ratio.

• The variance σ2 = Vπ[f(X)] can be written analogously as:

σ2
IS =

∫
Rd

(f(x)π(x))2

πbias(x) dx − µ2 = Eπbias

[
(f(x)π(x) − µπbias(x))2

π2
bias(x)

]
. (34)
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Importance sampling: estimators

• The IS estimate of µ is

µ ≈ µ̂IS = 1
n

n∑
i=1

f(Xi)w(Xi) with w(Xi) = π(Xi)
πbias(Xi)

, (35)

where {Xi}n
i=1

iid∼ πbias, and each value w(Xi) represents a weight that corrects for the use of
the biasing density and ensures that the IS estimator remains unbiased, i.e., Eπbias [µ̂IS] = µ.

• Moreover, the variance of the IS estimator is

Vπbias [µ̂IS] = 1
n

(
Eπbias

[
(f(x)w(x) − µ)2])

= 1
n

(∫
Rd

(f(x)π(x))2

πbias(x) dx − µ2
)

= 1
n

(
Eπbias

[
(f(x)w(x))2]− µ2) .
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Importance sampling: optimal biasing density (I)
• We can also approximate the 99% confidence interval for µ similar to the MC case, i.e.,

µ̂IS ± 2.58 σ̂IS√
n

where σ̂2
IS = 1

n

n∑
i=1

(f(Xi)w(Xi) − µ̂IS)2. (36)

• To choose a good biasing distribution requires some educated guessing and possibly numerical
search. Rule: πbias should have tails at least as heavy as π does.

• We can also try to find the optimal biasing density as follows. Aiming to reduce the variance,
we require a πbias such that,

π⋆
bias(x) = arg min

πbias

Eπbias

[
(f(x)w(x))2] , (40)

where π⋆
bias is the so-called optimal biasing density.

F. Uribe | LUT University SCIP | 40



Importance sampling: optimal biasing density (I)
• We can also approximate the 99% confidence interval for µ similar to the MC case, i.e.,

µ̂IS ± 2.58 σ̂IS√
n

where σ̂2
IS = 1

n

n∑
i=1

(f(Xi)w(Xi) − µ̂IS)2. (39)

• To choose a good biasing distribution requires some educated guessing and possibly numerical
search. Rule: πbias should have tails at least as heavy as π (domination !).

• We can also try to find the optimal biasing density as follows. Aiming to reduce the variance,
we require a πbias such that,

π⋆
bias(x) = arg min

πbias

Eπbias

[
(f(x)w(x))2] , (37)

where π⋆
bias is the so-called optimal biasing density.
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Importance sampling: optimal biasing density (II)
• The minimizer of eq. (37) can be found by applying Jensen’s inequality

Eπbias

[
(f(x)w(x))2] ≥ (Eπbias [|f(x)| w(x)])2

.

The relation is strict if |f(x)| w(x) is constant. Hence, the optimal biasing density, gener-
ating a zero-variance estimate, is given by

π⋆
bias(x) ∝ |f(x)| π(x) = 1

µ
|f(x)| π(x).

• Although zero-variance biasing densities are not usable, they provide insight into the design
of a good IS scheme, e.g., the cross-entropy method.

• The likelihood ratio also reveals a dimension effect for IS. Some weights can become signif-
icantly larger than others.
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Importance sampling: example (I)
• We want to estimate the integral:∫ 10

0
f(x) dx with f(x) = exp(−2 |x − 5|). (38)

• Problem with standard MC: this function is peaked at 5, and decays quickly elsewhere,
therefore, under the uniform distribution (π = U(0, 10)), many of the points are contributing
very little to this expectation.

• Something more like a Gaussian function with mean at 5 and small variance, say, 1, would
provide greater precision: πbias = N (5, 1). Hence:

Eπbias [f(x)w(x)] =
∫ 10

0
10 exp(−2 |x − 5|)

1
10

1√
2π

exp(− (x−5)2

2 )
1√
2π

exp
(

− (x − 5)2

2

)
dx.

(39)
• Continue in code...
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Importance sampling: example (II)

0 2 4 6 8 10
x

0.0

0.2

0.4

0.6

0.8

1.0

f (x)

π(x)

πbias(x)

Figure: For the integration of f(x), IS provided a substantial increase in precision. MC std ≈ 2.02, IS
std ≈ 0.59.
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Importance sampling: self-normalized

• Sometimes we can only compute an unnormalized version of π, π(x) = c1π(x) where c1 > 0
is unknown. The same may be true for the biasing density, i.e., πbias(x) = c2πbias(x), where
c2 > 0 is unknown.

• In this case, we can compute the likelihood ratio w = π(x)/ πbias(x) = (c1/c2)(π(x)/πbias(x)),
and use the self-normalized IS estimator:

µ ≈ µ̂sIS =
∑n

i=1 f(Xi) w(Xi)∑n
i=1 w(Xi)

, (40)

where {Xi}n
i=1 ∼ πbias.

• The self-normalized IS estimator requires a stronger condition on πbias. We now need
πbias(x) > 0 whenever π(x) > 0, even if f(x) is zero with high probability.
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Importance sampling: diagnostics I
• IS uses unequally weighted samples. The weights are wi = w(Xi) = π(Xi)/πbias(Xi) > 0

for i = 1, . . . , n. We want to have a diagnostic to tell when the weights are problematic.

• A common metric is the effective sample size4:

nESS =
(
∑n

i=1 w(xi))
2∑n

i=1(w(xi))2 =
(
∑n

i=1 wi)
2∑N

i=1 w2
i

=
(
W̃
)2

W̃ 2
, (41)

where W̃ denotes the sum of the weights, W̃ 2 the sum of the squared weights, and 1 ≤
nESS ≤ n.

• The weights are all the same when nESS = n. Conversely, if the weights are very unequal,
the IS estimator is averaging only with nESS ≪ n samples and thus it is less accurate.

4
A. B. Owen. Monte Carlo theory, methods and examples. artowen.su.domains/mc/, 2018, Ch.9 p.11.
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Importance sampling: diagnostics II

• Another way to express the nESS is via the coefficient of variation of the weights cv(w):

nESS = n

1 + (cv(w))2 , (42)

where w = {wi}n
i=1 is the vector of weights. Again, if nESS is too small, we know πbias

produces imbalanced weights.

• Effective sample sizes are imperfect diagnostics: When they are too small, we have a sign
that they are problematic. When they are large, we still cannot conclude that IS has worked.

• Moreover, badly skewed weights could give a badly estimated mean along with a bad variance
estimate that masks the problem.

• We can also use the variance as a diagnostic. When it is quite large, we would conclude that
IS has not worked well.
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Importance sampling: some comments

• IS and acceptance-rejection sampling are quite similar ideas.

• Some techniques used to find biasing densities are:
▶ Exponential tilting: IS by changing the parameter θ of a πbias(x;θ) chosen from an exponential

family.

▶ Modes and Hessians: matching the Hessian of πbias(x) to that of π(x) at the mode.

▶ Mixture IS: πbias(x) comes from a mixture distribution. Mixtures of unimodal densities provide
a flexible approximation to multimodal targets.

▶ Defensive IS: we take a πbias(x) thought to be a good one and mix it with π(x), i.e.,
πbias(x; α) = α1π(x) + α2πbias(x).

▶ Cross-entropy method: finds an optimal approximation in the Kullback–Leibler divergence
sense.
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Importance sampling: cross-entropy method
• The standard cross-entropy (CE) method [3] considers the problem of approximating π⋆

bias(x)
by a parametric biasing density πbias(x;θ), with reference parameters θ.

• The approximation is selected from a family of densities Π = {πbias(x;θ) | θ ∈ Θ} designed
to be of simpler form than π⋆

bias.

• Thereafter, the objective is to find θ⋆ ∈ Θ such that the distance between the optimal and
approximated biasing densities is minimal. The dissimilarity between these distributions is
measured by the cross-entropy or Kullback–Leibler divergence (KLD)

DKL (π⋆
bias||πbias) =

∫
Rd

ln
(

π⋆
bias(x)

πbias(x;θ)

)
π⋆

bias(x)dx

=
∫
Rd

ln π⋆
bias(x) π⋆

bias(x)dx −
∫
Rd

ln πbias(x;θ) π⋆
bias(x)dx. (43)
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Importance sampling: cross-entropy method
• The first term in eq. (43) is invariant with respect to any choice of πbias and the problem

reduces to the optimization task:

θ⋆ = arg max
θ∈Θ

Eπ⋆
bias

[ln πbias(x;θ)] , (44)

where θ⋆ denotes the optimal reference parameters. We can substitute the optimal IS biasing
density into eq. (44) to express the optimization program as

θ⋆ = arg max
θ∈Θ

Eπ[ln πbias(x;θ) f(x)] . (45)

• To efficiently evaluate eq. (45), we apply IS with biasing distribution πbias(x;θ′) ∈ Π:

θ⋆ = arg max
θ∈Θ

Eπbias(·;θ′)[ln πbias(x;θ) f(x) w(x;θ′)] with w(x;θ′) = π(x)
πbias(x;θ′) .

(46)
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Importance sampling: cross-entropy method
• We can further employ the IS estimator of the expectation in eq. (46) to define the stochastic

optimization problem:

θ⋆ ≈ θ̂⋆ = arg max
θ∈Θ

J (θ) with J (θ) = 1
n

n∑
i=1

ln πbias(Xi;θ)f(Xi)w(Xi;θ′), (47)

where {Xi}n
i=1

iid∼ πbias(·;θ′).

• If the biasing distribution belongs to the natural exponential family, the solution of the
stochastic optimization problem can be computed analytically. For instance, if Π is a collec-
tion of Gaussian densities, the parameter θ is selected from the space Θ containing mean
vectors and covariance matrices.

• In this case, the reference parameter estimator θ̂⋆ has an explicit updating rule.

F. Uribe | LUT University SCIP | 50



Importance sampling: cross-entropy method
• One still requires a good initial choice of θ′, such that a substantial number of samples

from πbias(x;θ′) lie in the failure domain. This is addressed in the CE method by gradually
approaching the optimal biasing density. The idea is to construct a sequence of intermediate
sets {x ∈ Rd : f(x) ≤ γj}, with intermediate thresholds γj ≥ 0.

• Starting from an initial reference parameter estimate θ̂0, the sequential CE program reads

θ̂j+1 = arg max
θ∈Θ

1
n

n∑
i=1

ln πbias(Xi;θ)w̃(j)
i with w̃

(j)
i = f(Xi)

π(Xi)
πbias(Xi; θ̂j)

, (48)

where {xi}n
i=1

iid∼ πbias(·; θ̂j).

• The CE optimization eq. (47) is now solved at each level with respect to an intermediate
optimal biasing density π⋆

bias,j(x) associated to a threshold γj .
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Importance sampling: cross-entropy method

• Note that if π and πbias belong to the same parametric family, the initial estimate of the
reference parameters is typically selected as the parameters defining π (e.g., if Gaussian,
θ̂0 = [µ, Σ]).

• In the CE method, f(x) can be either an indicator function (if a rare event problem) or a
likelihood (if a Bayesian problem).

• If f(x) accounts for a rare event problem, each threshold γj is defined as the ρ-quantile
of the sequence of values {fi = f(Xi)}n

i=1. The value ρ is chosen to ensure that a good
portion of the samples from πbias(·;θj) fall in the next set set, usually ρ ∈ [0.01, 0.1].
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Importance sampling: cross-entropy method example (see Project)

• Consider one of the target applications, where f(U) is the forward model solution at location
L/2 and U ∈ R3 is standard Gaussian.

• We can define a rare event problem of estimating the probability that the model response ex-
ceeds a maximum allowed threshold, i.e., P[τ ≤ f(x)]. The thresholds are τ = {50, 10, 1.5, 2}
for Poisson, Heat, Abel and Deconvolution problems, respectively.

• Assuming the biasing density belongs to a family of Gaussian distributions. Employ the CE
method to find P[τ ≤ f(x)].

• Continue on code...
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Variance reduction: final comments

• Variance reduction is an ongoing field of research in UQ, for both forward and inverse
problems.

• Many of the methods exposed here can be extended to the case of inverse problems within
the Bayesian framework.

• We will see that practical UQ for inverse problems requires a solid foundation on stochastic
simulation (i.e., the methods discussed in the past lectures).
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