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Why variance reduction?

o We have seen that standard MC typically has an error variance of the form o2/n. We get a
better answer with larger n, but the computing time grows with n.

e Sometimes we can find a way to reduce o instead. We construct a new Monte Carlo
problem with the same answer as our original one but with a lower 0 —>
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Why variance reduction?

e We have seen that standard MC typically has an error variance of the form o2 /n. We get a
better answer with larger n, but the computing time grows with n.

e Sometimes we can find a way to reduce o instead. We construct a new Monte Carlo
problem with the same answer as our original one but with a lower ¢ = variance reduction
techniques.

e We can group the methods in the following categories:
» Type-1 (using clever samples): antithetic sampling, stratification, and common random num-
bers.
» Type-2 (using things we know): conditioning and control variates.
» Type-3 (using auxiliary densities): importance sampling and its variants.

e These methods are also used in combination with MCMC.
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This lecture...

e The lecture is based on multiple references. However, we mostly follow Chapters 8 and 9 of
the book by Art Owen?, which is freely available online.

1
A. B. Owen. Monte Carlo theory, methods and examples. artowen.su.domains/mc/, 2018.
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https://artowen.su.domains/mc/
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Variance reduction: type-1 methods (“using clever samples”)
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Antithetic sampling: intro

e Random variables X, Y on the same probability space are , if they have the same
distribution and their covariance is negative.

e When we are using Monte Carlo averages of quantities f(x;) then the randomness in the
algorithm leads to some error cancellation. In antithetic sampling, we try to get even more
cancellation.

e An @ is one that gives the opposite value of f(x), i.e., being low when
f () is high and vice versa. Ordinarily, we get an opposite f by sampling at a point  that
is somehow opposite to x.

o Let u = E[X] for X ~ 7, where 7 is a symmetric density on R?. Here, symmetry is with
respect to reflection through the center point c of R?.

F. Uribe | LUT Universit
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Antithetic sampling: estimator
o If we reflect  through ¢, we have & — ¢ = —(x — ¢), and we get the point £ = 2¢ — x. For
basic examples, when 7 = A/(0,X) then £ = —x. When 7 =1(0,1)¢, we have z =1 — =

(componentwise).

e The antithetic sampling estimate of p is:

n/2

N%,[Lanti = ﬁZf(wz>+f(‘%l>? (1)

idd . . . . .
where x; ~ 7 and n is an even number. This estimator is also unbiased.

e The rationale for antithetic sampling is that each value of x is balanced by its opposite x,
satisfying (x + )/2 = c.
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Antithetic sampling
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Figure: Five points and their antithetics. Left: from a standard uniform. Right: from a standard

Gaussian.
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Antithetic sampling: variance

e Whether the balance is helpful or not depends on f. If f is nearly linear, we could obtain a
large improvement.

e The variance of antithetic sampling is:

n/2
n/2 =
Vil =V | 032 ) + (@) )| = "2 [rx) + (X)) )
1 o o o?
= o (VIO + V[£(X0)] +2€0v [£(X), /(X)] ) = T (1+p) (3)
e Since —1 < p < 1, we obtain 0 < 6%(1 + p) < 202, In the best case, antithetic sampling
gives the exact answer from just one pair of function evaluations. In the worst case, it
doubles the variance.
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Antithetic sampling: when it works?

e Hence, the variance of standard MC and antithetics can be written as:

Wil =5 > ol [22): o

antithetic sampling eliminates the variance of f, but doubles the contribution from f..

e Tip: antithetic sampling reduces the variance if p < 0 (e.g., monotone function), or equiv-

alently if 02 > o2. This analysis is appropriate when the most of the computation is in

evaluating f.

o Because antithetic samples have dependent values within pairs. We can define y; = fo(x;) =
(f(zi) + f(2:))/2, fori=1,...,m =n/2, then

m

R 1 & 1 R
Hanti = m Zlyia Uznti = m—1 _ l(yi - ,Uanti)2~ (5)
1= 1=
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Antithetic sampling: example (1)
Consider the expected logarithmic return of a portfolio:

e There are K stocks and the portfolio has proportion Ay > 0 in stock k, with Zkl,(zl A = 1.

e The expected logarithmic return is defined as

K
log (Z Ak exp(X;Q)] , (6)

k=1

n(A) =E

where X € RX is the vector of returns.
o If one keeps reinvesting/rebalancing the portfolio at N regular time intervals then, by the

LLN, our fortune grows as exp(Np + O(N)), assuming of course that the X for each time
period are idd.

F. Uribe | LUT Universit SCIP |9
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Antithetic sampling: example (Il)

e The log-optimal choice A is the allocation that maximizes p. Finding a model for the
distribution of X and then choosing A are challenging problems. We focus on the problem
of evaluating u()) for a given .

e We take Ay = 1/K with K = 500. We also suppose that each marginal distribution is
X ~ N (8,0?%) but that X has the t(0, v, X) copula. Here § = 0.001 and o = 0.03 (=~ one
week time frame). And v = 4 with covariance is ¥ = plx 1L + (1 — p)I] for p = 0.3.

o Letting f(X) = log (z,ﬁil exp(Xk)/K>, the MC estimate is /i = 1/n 37, f(X;).

e The antithetic to X; has components )?ik =20 — X;i.

e Continue on code...

F. Uribe | LUT Universit SCIP | 10
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Stratified sampling: intro
e The idea in stratified sampling is to split up the domain D of X into separate regions, take
a sample of points from each region, and combine the results.

e We might do better by oversampling within the important strata and undersampling those
in which f is nearly constant.

e To use stratified sampling, we must know the sizes w; = P[X € D;] of the strata, and we
must also know how to sample X ~ m; for j =1,...,J.

e When we are defining strata, we naturally prefer ones we can sample from. If however, we
know w; but are unable to sample from 7;, then we use post-stratification.

F. Uribe | LUT Universit
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Stratified sampling

1

27 o N
° ° e E
0.75 - W 0 e
o b /,’ o o
o ° ° ° ’ { Vol
(1] he———— 0 : o
oy /o }
T . o/
0.25 S ° . SRR ¢
° 3 ° ° ° o\ ____________ - °
0 : —2 e
0 025 05 07 1 -2 -1 0 1 2

Figure: Left: 20 points in [0, 1}2 of which 5 are sampled uniformly from within each quadrants (J = 4).
Right: 25 points from a standard Gaussian. There are 4 concentric rings separating the distribution into
J =5 equally probable strata with 3 points sampled from each.
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Stratified sampling: estimator

o let X;; ~mjfori=1,...,n;and j =1,...,J be sampled independently. The stratified
sampling estimate is

J n;
Wi
~ 0 - J )

M = HUstrat = Z TTJ Z f(Xu)a (7)

Jj=1 =1

this estimator is also unbiased.

e As done previously for antithetic sampling, we now study the variance of the estimator [istat
to determine when stratification is advantageous, and to see how to design an effective

stratification.

o We define p; = Er,[f()] and 07 = V. [f(x)] to be the jth stratum mean and variance,
respectively.

F. Uribe | LUT Universit
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Stratified sampling: variance
e The variance of the stratified sampling estimate is
2
29

J
Nstrat Z 77 (8)

)

an immediate consequence is that V[fisyrat] = 0 for integrands f that are constant within
strata D;.

e The variance of f(X) can be decomposed into within- and between-stratum components?

02=V[f(X)]=E[ [f (X\Z]HV[E[ X2, Z2=1,....J (92)

]2+ij )2 =04 +0%; (9b)

Il
WMN

2
See this Link to check this property of the variance.

F. Uribe | LUT Universit SCIP | 14
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Stratified sampling: post-stratification (proportional)
o . if we know w; but we cannot sample X ~ 7;. The idea is to sample
X, ~ 7 and assign it to their strata afterwards. The estimators remain the same.

e The main difference is that n; are now random. A natural choice for stratum sample sizes
is proportional allocation, n; = nw;. In this case, the estimators reduce to

J nj
,astrat,p = % Z Z f(XU) Ustrat p— Z w;o ] (10)

j=1i=1

e We can compare iid and proportional stratification in one equation

V(i 11 1] [0%
N = — ; 11
|:V [:ustrat,p] n|l 0O 0'23 ( )
e Tips: a good stratification scheme is one that reduces the within-stratum variance %, ideally

0% > o%. If sampling from 7; is slower than sampling from 7, we loose any efficiency gain
from stratification.

F. Uribe | LUT Universit SCIP
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Stratified sampling: post-stratification (non-proportional)

e A proportional allocation is not necessarily the most efficient. Optimal sample allocation
can be achieved using Neyman allocation, and the formulation allows for unequal sampling
costs from the different strata.

e To minimize variance, we use
W;ioy

Ve

where ¢; is the (expected) cost to generate X from m; and then compute f(X).

; (12)

TLjO(

e Non-proportional allocations carry some risk. The optimal allocation can be worse than the
proportional allocation discussed before.

e There are also results on how to construct optional strata. In general, we want strata within
which f is as flat as possible.

F. Uribe | LUT Universit
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Stratified sampling: example (1)

Compound Poisson models (random process with jumps) are commonly used for rainfall:

e The number of rainfall events (storms) in the coming month is S ~ Poi(\) with A\ = 2.9.

e The depth of rainfall in a storm s is ds ~ Weib(k, o) with shape k¥ = 0.8 and scale o = 3
(cm) and the storms are independent.

e If the total rainfall is below 5 centimeters then an emergency water allocation will be imposed.
The total rainfall is X = Y22 d, taking the value 0 when S = 0.

o It is easy to get the mean and variance, but here we want P[X < 5], that is E[f(X)] where
f(X) =1xcs.

e Continue in code...

F. Uribe | LUT Universit SCIP | 17
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Stratified sampling: example (I1)

40 . P "
E30 . . :
> : o -
= ) -~ o :‘. o e o:
£ 20 ‘ R 4 L e s
= 3%2 o e .
g . S0 % :
= . Ly .--:.. g
£ 10 ER A LY A
= L 'I: . .‘.' -

2i% ° ‘-é" P by
- . Q“:' [
0 - a o . H
0 1 2 3 4 5 6 7 8

Number of storms, S (jittered)

Figure: 1000 simulations of the compound Poisson model for rainfall. We define 7 strata.
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Common random numbers: intro and estimator

e Suppose that f and g are closely related functions and that we want to find E[f(x) — g(z)]
for © ~ .

e Maybe f(x) = h(x;0) with a parameter § € R™. To study its effect, we look at g(x) =
h(x; @), for some 6 # 6.

e Because E[f(X) — g(X)] = E[f(X)] — E[g(X)], we have two options:

ni

Beom = 7 > f(X) = 9(X),  Dna= o> f(Xa) = 2> g(X)  (13)
=1 i=1 =1

where X; ~ 7 (left: common random numbers (CRN)) and X,;; ~ 7 (right: independent
random numbers).

F. Uribe | LUT Universit SCIP | 19
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Common random numbers: variance
e Taking n = n; = nq, the sample variances are :
N _ l 2 2 . _ l 2 2
V |Deom | = - (Uf + 0, 2p0504) V |Ding| = - (af + ag). (14)

e When p > 0, we are better off using common random numbers. Retaining some common
random numbers requires considerable care in synchronization.

e The same problem arises if we are comparing E[f(X)] for X ~ 7 and E {f(kv)} for X ~ .

e Application: CRN applies when we are comparing two or more alternative configurations
(of a system) instead of investigating a single configuration.

F. Uribe | LUT Universit
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Common random numbers: couplings

e Example: if a first simulation has X; ' N (1, 02) and a second has X; ' N (f1,52), then

we can sample Z; & N(0,1) and use

Deom = ~ 3" f(u+02)) - f(ji+ 52). (15)
=1

n-

o More generally, when X is generated via a transformation T'(U;; 6) of U; ~ U(0,1)?, then

we can average f(T(U;;0)) — f(T(U;;0)).

e The construction above is a coupling of the random vectors X and X. Any joint distribution
on (X, X) with X ~ 7 and X ~ 7 is a coupling.

F. Uribe | LUT Universit SCIP |21
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Common random numbers: implementation

e We want to estimate p; = E[h(X;6,))], for j = 1,...,m and using n random inputs
{X;}";. In the simplest case, m = 2 and we are interested in 1 — po.

e We can run a nested loop over samples indexed by i and parameter values indexed by j.
There are two main approaches that we can take, depending on which is the outer loop.

e CRN requires synchronization of the random number streams, which ensures that in addition
to using the same random numbers to simulate all configurations, a specific random number
used for a specific purpose in one configuration is used for exactly the same purpose in all
other configurations.

F. Uribe | LUT Universit
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Common random numbers: algorithms

Algorithm 1: Version 1: common random numbers

setseed(seed);
f;=0,1<j<m;
fori =1 ton do
X, ~
fj =g +h(Xi505),1<j<my
end
= fij/n, 1< j<m;

N o s W N

Algorithm 2: Version 2: common random numbers

for j =1 tom do
setseed(seed);
B =0;
for i =1 ton do

X; ~

fy =y + h(Xi;0;);

end
fg = fug/m;

© N oG A WwN =

LUT Universit
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Variance reduction: type-2 methods (“using things we know”)

F. Uribe | LUT Universit
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Conditioning: intro and estimator

e Sometimes we can do part of the problem in closed form, and then do the rest of it by MC
or some other numerical method.

e Assume that X € R*¥ and Y € R%* are random vectors and we want to estimate
E[f(X.,Y)]. The standard estimator is i = 1/n> ., f(X;,Y;), where (X;,Y;) € R?
are independent samples from the joint distribution.

e Define h(z) = E[f(X,Y) | X = x|, then we can also estimateS:

1 n
Acon = - 2 Xi 5 1
ficond n;h( ) (16)

where X; are sampled independently from the distribution of X. This method is called
conditioning or conditional Monte Carlo.

® Note that E[f(X,Y)] = BE[f(X,Y) | X]] = B[r(X)].

F. Uribe | LUT Universit SCIP | 25
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Conditioning: variance
e The variance of the conditional MC estimator is:
Vljeona] = 2 V[B(X)] = TVIBLAX, ¥) | X)), (17)
e From the properties of the variance, we know:
VIf(X,Y)] =E[V[f(X,Y) | X]| + VE[f(X,Y) | X]]; (18)

hence, conditional Monte Carlo cannot have higher variance than crude MC sampling of f.

e Conditioning is a special case of de-randomization which is sometimes called Rao—Blackwe-
llization.

e De-randomization by conditioning always reduces variance, it is not always worth doing. We
could find our estimate is less efficient, if computing h costs much more than f.

F. Uribe | LUT Universit SCIP | 26
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Conditioning: example

o Let C ={(z,y) |a<2<b,0<y< f(xr)} and assume that f(z) < ¢ holds for x € [a, b].
Then the MC estimate of the integral is

\75|(C)= C(b

“ S gy (XY ~ Ua,b] x 0,6, (19)
i=1

e The conditional expectation is:

M) =BT | X =)= — = [ brgomotayar = L2 o)

mx () J oo
e Conditioning yields the estimate:

i=1 i=1

F. Uribe | LUT Universit SCIP | 27
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Conditioning: final comments

e Conditioning can be used in combination with other variance reduction methods. The most
straightforward way is to apply those other methods to the problem of estimating E[h(X)].

e The combination of conditioning with stratified and /or antithetic sampling is simple, provided
that the distribution of X is amenable to stratification or has some natural symmetry that
we can exploit in antithetic sampling.

e Conditioning brings a dimension reduction in addition to the variance reduction, because the
dimension k of X is smaller than the dimension d of (X,Y).

e In the Rao—Blackwell theorem, the quantity being conditioned on has to obey quite stringent
conditions. Those conditions are usually not needed in MC applications.

F. Uribe | LUT Universit
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Control variates: intro

e Control variates provide a way to exploit closed form results. With control variates we use
some other problem, quite similar to our given one, but for which an exact answer is known.

e Suppose first that we want to find = E[f(X)] and that we know the value § = E[h(X)],
where h(X) = f(X). Using the MC estimators for each of these quantities:

=S FX) 0= 3 (X)) (22)
=1 =1

we can estimate p, using the (unbiased) difference estimator:

fudiff = % Z(f(Xi) —h(X;)+0=p—0+0. (23)

F. Uribe | LUT Universit SCIP | 29
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Control variates: estimators
e The variance of the difference estimator is
Vijan] = - VIF(X) ~ h(X)]. (24)

e If his similar to f in the sense that the difference f(X) — h(X) has smaller variance than
f(X), we will reduce the variance. In this setting, h(X) is called the control variate.

e The difference estimator is not the only way to use a control variate. The ratio and product
estimators are also used:

R L R (L
Hratio = %9 Hprod = %; (25)

however, the ratio and product estimators are usually biased.

F. Uribe | LUT Universit SCIP | 30
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Control variates: regression estimator (1)

e By far the most common way of using a control variate is through the regression. For a
value § € R, the (unbiased) regression estimator of (i is:

%Z (X)) + 60 = jr— B(0 - 0); (26)

note that 5 = 0 gives standard MC and 3 = 1 yields the difference estimator.

e The variance of this estimator is:
Viig] = e (VIf(X)] = 28Cov [f(X), h(X)] + B2V [A(X)]) . (27)

n

e Intuition: control variates create a new random vector Z = f(X) + B(h(X) — 0), that
allows us to leverage 6 in order to compute E[f(X)] in an easier way.

F. Uribe | LUT Universit SCIP | 31
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Control variates: regression estimator (I1)
e We can find the optimal value of 3 as:
- win - Cov [f(X), h(X)] - o?
Bopt = arggmnW[Wg] = VIA(X)] and V[Nﬁopt] = ;(1 —p%); (28)

note that in the regression estimator, any control variate that correlates with f is helpful,
even one that correlates negatively.

e Since we do not know [,pt in practice, it can be estimated as

e )
> i (X)) = 0)2

note that the estimator ,&B is no longer unbiased. But the bias is very small !

F. Uribe | LUT Universit SCIP | 32
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Control variates: regression estimator (l11)
e The estimated variance of fig is
A2 R 1 n R R N2
6% =V || = = > (F(X0) = iy = B(X.) — ) (30)
=1

and a 99% confidence interval is i3 +2.58 5 5.

e The variance with a control variate is never worse than the MC one. Whether the control
variate is helpful ultimately depends on how much it costs to use it.

o A significant advantage of the regression estimator is that it generalizes easily to handle
multiple control variates. The potential value is greatest when f is expensive but is approx-
imately equal to a linear combination of inexpensive control variates.

F. Uribe | LUT Universit
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Control variates: example |

Let's compute the integral:
/4 /4
0 0

where f(X) = f(z,y) = 2%y*sin(z + y) log(z + v).

We are going to use the control variate h(X) = h(x,y) = 22y?, for which we know the integral
is equal to 8 = ((7/4)%)/9.

Continue in code...

F. Uribe | LUT Universit SCIP | 34
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Control variates: example Il

o Consider one of the target applications, where f(U) is the forward model solution at location
L/2 and U € R3 is standard Gaussian.

o We can define a control variate to estimate the mean IE[f(U)]. For instance, a linearization
of the map U — f(U). This coarse model Y = h(U), is given by a multivariate linear

regression:
d

Yi=co+» cUj+m, i=1....n (32)
J=1
here, Y; is the response for the i-th observation, cg is the regression intercept, c; is the j-th
predictor regression, X, ; is the j-th predictor for the i-th observation, and 7; is a Gaussian
error term. Here, n is the number of observations used to train the regression.

e Using the ordinary least squares, the coefficients are ¢ = (UTU)~'UTY. The mean of the
control variate is § = E[Uc] = ¢o.
Continue in code...

F. Uribe | LUT Universit
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Variance reduction: type-3 methods (“using auxiliary densities”)
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Importance sampling: intro

e In many applications, we want to compute p = E[f(X)] where f(X) is nearly zero outside
a region A. The set A may have small volume, or it may be in the tail of the X distribution.
A plain MC sample from 7 could fail to have even one point inside A.

e We must get some samples from the region A. We do this by sampling from a distribution
that over-weights the important region, hence the name importance sampling (IS) [1].

e IS is more than just a variance reduction method. It can be used to study one distribution
while sampling from another. As a result, we can use IS as an alternative to acceptance-
rejection.

e IS is also an important prerequisite for sequential Monte Carlo, one of the state-of-the-art
Bayesian inference techniques.

F. Uribe | LUT Universit
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Importance sampling: intro

o Consider again the problem of finding IE.[f(X)]:

_ z)m(x)dx = 7f(w)7r(as)7rl x)dxr = T m(x)
i= [ t@n@te = [ T epie — b 1@ T )

where Tyias is the so-called importance or biasing density (supp(f(x)m(x)) C supp(f(x)
Thias(€))). Moreover, the adjustment factor 7(x)/myias() is called the likelihood ratio.

e The variance 02 = V. [f(X)] can be written analogously as:

> / (f(@)m(@)* | (f (@) () — /“Tbias(x))2:| _

Ojc —
1S 7Tbias(m) Trl%ias(m)

T — /12 = Eny, |: (34)
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Importance sampling: estimators
e The IS estimate of u is
~ s = — X)) w(X; with  w(X;) = ——, 35
1 His n ; f( ) ( ) ( ) Wbias(Xi) ( )

where { X} S Thias, and each value w(X;) represents a weight that corrects for the use of
=1 8
the biasing density and ensures that the IS estimator remains unbiased, i.e., Er,. [fus] = .

o Moreover, the variance of the IS estimator is
(Eﬂ'bias [(f(:v)w(w) - M)2]>
([, SO gy 7) = 2 (. [(Futa)] — 7).

7Tbias(m)

V‘ﬂ'bias [/745} =

Sl 3
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Importance sampling: optimal biasing density (1)

e We can also approximate the 99% confidence interval for u similar to the MC case, i.e.,

s £2.5875  where Z — fus)?. (36)

NG

:\H
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Importance sampling: optimal biasing density (1)

e We can also approximate the 99% confidence interval for p similar to the MC case, i.e.,

X __ s 1 o
+ 2.58—= h 2 _ — X w(X;) — 2 39
fiis ) N where  Gig = g (f(X)w(X;) — fus) (39)

1=1

e To choose a good biasing distribution requires some educated guessing and possibly numerical
search. Rule: s should have tails at least as heavy as 7 (domination !).

e We can also try to find the optimal biasing density as follows. Aiming to reduce the variance,
we require a Tpias Such that,

ngas(m) = arg min ]Eﬂ'bias [(f(x)w(az))Q] ) (37)

Thias

where 7}, is the so-called optimal biasing density.

F. Uribe | LUT Universit
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Importance sampling: optimal biasing density (I1)
e The minimizer of eq. (37) can be found by applying Jensen's inequality

Eny. [(f(@)w(@))*] 2 (En,,, [ (@) w(@))).

The relation is strict if |f(x)| w(x) is constant. Hence, the optimal biasing density, gener-
ating a zero-variance estimate, is given by

s () o | (@)] () = % (@) ().

e Although zero-variance biasing densities are not usable, they provide insight into the design
of a good IS scheme, e.g., the cross-entropy method.

e The likelihood ratio also reveals a dimension effect for IS. Some weights can become signif-
icantly larger than others.

F. Uribe | LUT Universit SCIP | 41
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Importance sampling: example (1)
e We want to estimate the integral:
10
f(z)dz with  f(z) = exp(—2 |z — 5]). (38)
0

e Problem with standard MC: this function is peaked at 5, and decays quickly elsewhere,
therefore, under the uniform distribution (7 = 24(0, 10)), many of the points are contributing
very little to this expectation.

e Something more like a Gaussian function with mean at 5 and small variance, say, 1, would
provide greater precision: mpias = N (5,1). Hence:

10 1 —5)2
En )] = [ 10ep(-2fe ) B oo (-5 ) ae
= exp(— 5 m
(39)

e Continue in code...
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Importance sampling: example (1)

1.0
— fl2)

0.8 — n(2)
I ﬂ-bias(l)
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0.0

2 4 6 8 10

T

Figure: For the integration of f(z), IS provided a substantial increase in precision. MC std ~ 2.02, IS
std ~ 0.59.
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Importance sampling: self-normalized

e Sometimes we can only compute an unnormalized version of m, T(z) = cy7(x) where ¢; > 0
is unknown. The same may be true for the biasing density, i.e., Tpias() = compias(x), where
co > 0 is unknown.

o In this case, we can compute the likelihood ratio W = 7(x)/ Tpias(x) = (c1/¢2) (7(x) /Tpias(x)),
and use the self-normalized IS estimator:

Do [(Xi) W(X5)

~~ AS = , 4
HS s i1 W(X5) (40)

where { X} | ~ Tpias.

e The self-normalized IS estimator requires a stronger condition on 7. We now need
Thias() > 0 whenever 7(x) > 0, even if f(x) is zero with high probability.
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Importance sampling: diagnostics |

o IS uses unequally weighted samples. The weights are w; = w(X;) = 7(X;)/mias(X;) > 0
fori=1,...,n. We want to have a diagnostic to tell when the weights are problematic.

e A common metric is the effective sample size*:

peg - i (@)’ (i w)® (W) )
i (w(z))? Zfil w? w2’

where T denotes the sum of the weights, ﬁ/\/? the sum of the squared weights, and 1 <
ngss < n.

e The weights are all the same when nggs = n. Conversely, if the weights are very unequal,
the IS estimator is averaging only with nggg < n samples and thus it is less accurate.

4
A. B. Owen. Monte Carlo theory, methods and examples. artowen.su.domains/mc/, 2018, Ch.9 p.11.

F. Uribe | LUT Universit


https://artowen.su.domains/mc/

§ Lt
N University

Importance sampling: diagnostics |1

o Another way to express the nggg is via the coefficient of variation of the weights cv(w):

n

T e )

nESS =

where w = {w;}? is the vector of weights. Again, if ngsg is too small, we know 7pias
produces imbalanced weights.

o Effective sample sizes are imperfect diagnostics: When they are too small, we have a sign
that they are problematic. When they are large, we still cannot conclude that IS has worked.

e Moreover, badly skewed weights could give a badly estimated mean along with a bad variance
estimate that masks the problem.

e We can also use the variance as a diagnostic. When it is quite large, we would conclude that
IS has not worked well.
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Importance sampling: some comments

o IS and acceptance-rejection sampling are quite similar ideas.

e Some techniques used to find biasing densities are:
» Exponential tilting: IS by changing the parameter 0 of a muias(; ) chosen from an exponential
family.

» Modes and Hessians: matching the Hessian of mpiss() to that of m(x) at the mode.

» Mixture IS: mpiss() comes from a mixture distribution. Mixtures of unimodal densities provide
a flexible approximation to multimodal targets.

» Defensive IS: we take a mpias(x) thought to be a good one and mix it with w(x), i.e.,
Thias(; @) = a17(x) + wambias(T).

» Cross-entropy method: finds an optimal approximation in the Kullback—Leibler divergence
sense.
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Importance sampling: cross-entropy method

e The standard cross-entropy (CE) method [3] considers the problem of approximating 775;, ()
by a parametric biasing density Tpias(; 0), with reference parameters 6.

e The approximation is selected from a family of densities IT = {mpi.s(; @) | @ € ©} designed
to be of simpler form than w},__.

e Thereafter, the objective is to find 8* € © such that the distance between the optimal and
approximated biasing densities is minimal. The dissimilarity between these distributions is
measured by the cross-entropy or Kullback—Leibler divergence (KLD)

i () o e

Tbias (.’1}; 0)

DL (Tias||Thias) = /

Rd

- / 10 0 (&) () — / 10 My (2 0) e (). (43)
Rd Rd
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Importance sampling: cross-entropy method
e The first term in eq. (43) is invariant with respect to any choice of 7,5 and the problem

reduces to the optimization task:

9* = argmax ]Eﬂ—*_ [hl 7T-bias(m; 0)] ’ (44)
96(—) bias

where 8* denotes the optimal reference parameters. We can substitute the optimal IS biasing
density into eq. (44) to express the optimization program as

0" = argmax E, [In myias(x; 0) f(x)]. (45)
6co

o To efficiently evaluate eq. (45), we apply IS with biasing distribution mpas(x; ') € II:

0* = argmaxE, . (.on[InThias(x;0) f(x) w(z; 0')] with  w(x;0') = _ @) .
%e@ bias (0 )[ b ( )f( ) ( )} ( ) bias( 70/)
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Importance sampling: cross-entropy method

o We can further employ the IS estimator of the expectation in eq. (46) to define the stochastic
optimization problem:

0* ~ 6* =argmax J(0) with J(6) = 1 Zln Tbias (X35 0) f( X)) w(X;;0"),  (47)
0co n-

i
where { X}, N Thias(+; 0').

e If the biasing distribution belongs to the natural exponential family, the solution of the
stochastic optimization problem can be computed analytically. For instance, if IT is a collec-

tion of Gaussian densities, the parameter 0 is selected from the space © containing mean
vectors and covariance mattrices.

e In this case, the reference parameter estimator 6* has an explicit updating rule.
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Importance sampling: cross-entropy method

e One still requires a good initial choice of 8’, such that a substantial number of samples
from myias(; ') lie in the failure domain. This is addressed in the CE method by gradually
approaching the optimal biasing density. The idea is to construct a sequence of intermediate
sets {z € R?: f(x) < v;}, with intermediate thresholds ; > 0.

e Starting from an initial reference parameter estimate 50, the sequential CE program reads

~ 1 & ~() ~(4) m(Xi)
0,1 =argmax — In Thias (X3 0 wij with wij = f(X;) ———————, 48
j+1 = argmax ; bias ( ) ( )'/Tbias(Xi;gj) (48)

where {x;}" i Wbias('§§j)-

e The CE optimization eq. (47) is now solved at each level with respect to an intermediate
optimal biasing density 7}, ;(x) associated to a threshold ;.
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Importance sampling: cross-entropy method

e Note that if 7 and mpjas belong to the same parametric family, the initial estimate of the
reference parameters is typically selected as the parameters defining 7 (e.g., if Gaussian,

é\0 = [/J’v 2])

e In the CE method, f(x) can be either an indicator function (if a rare event problem) or a
likelihood (if a Bayesian problem).

e If f(x) accounts for a rare event problem, each threshold ~; is defined as the p-quantile

of the sequence of values {f; = f(X;)}_;. The value p is chosen to ensure that a good
portion of the samples from mpias(+; 0;) fall in the next set set, usually p € [0.01,0.1].
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Importance sampling: cross-entropy method example (see Project)

o Consider one of the target applications, where f(U) is the forward model solution at location
L/2 and U € R3 is standard Gaussian.

e We can define a rare event problem of estimating the probability that the model response ex-
ceeds a maximum allowed threshold, i.e., P[r < f(x)]. The thresholds are 7 = {50, 10,1.5,2}

for Poisson, Heat, Abel and Deconvolution problems, respectively.

e Assuming the biasing density belongs to a family of Gaussian distributions. Employ the CE
method to find P[r < f(x)].

e Continue on code...
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Variance reduction: final comments

e Variance reduction is an ongoing field of research in UQ, for both forward and inverse
problems.

e Many of the methods exposed here can be extended to the case of inverse problems within
the Bayesian framework.

o We will see that practical UQ for inverse problems requires a solid foundation on stochastic
simulation (i.e., the methods discussed in the past lectures).
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