

# Some variance reduction methods

---

**Felipe Uribe**

Computational Engineering  
School of Engineering Sciences  
Lappeenranta-Lahti University of Technology (LUT)

**Special Course on Inverse Problems**  
Lappeenranta, FI — January-February, 2024

## Why variance reduction?

- We have seen that standard MC typically has an error variance of the form  $\sigma^2/n$ . We get a better answer with larger  $n$ , but the computing time grows with  $n$ .
- Sometimes we can find a way to reduce  $\sigma$  instead. We construct a new Monte Carlo problem with the same answer as our original one but with a lower  $\sigma \implies$  **variance reduction techniques**.

## Why variance reduction?

- We have seen that standard MC typically has an error variance of the form  $\sigma^2/n$ . We get a better answer with larger  $n$ , but the computing time grows with  $n$ .
- Sometimes we can find a way to reduce  $\sigma$  instead. We construct a new Monte Carlo problem with the same answer as our original one but with a lower  $\sigma \implies$  variance reduction techniques.
- We can group the methods in the following categories:
  - ▶ Type-1 (**using clever samples**): antithetic sampling, stratification, and common random numbers.
  - ▶ Type-2 (**using things we know**): conditioning and control variates.
  - ▶ Type-3 (**using auxiliary densities**): importance sampling and its variants.
- These methods are also used in combination with MCMC.

## This lecture...

- The lecture is based on multiple references. However, we mostly follow Chapters 8 and 9 of the book by **Art Owen**<sup>1</sup>, which is freely available online.

---

<sup>1</sup>

A. B. Owen. *Monte Carlo theory, methods and examples*. [artowen.su.domains/mc/](http://artowen.su.domains/mc/), 2018.

## **Variance reduction: type-1 methods (“using clever samples”)**

## Antithetic sampling: intro

- Random variables  $X, Y$  on the same probability space are **antithetic**, if they have the same distribution and their covariance is negative.
- When we are using Monte Carlo averages of quantities  $f(\mathbf{x}_i)$  then the randomness in the algorithm leads to some error cancellation. In antithetic sampling, we try to get even more cancellation.
- An **antithetic sample**  $\tilde{\mathbf{x}}$  is one that gives the opposite value of  $f(\mathbf{x})$ , i.e., being low when  $f(\mathbf{x})$  is high and vice versa. Ordinarily, we get an opposite  $f$  by sampling at a point  $\tilde{\mathbf{x}}$  that is *somehow* opposite to  $\mathbf{x}$ .
- Let  $\mu = \mathbb{E}[\mathbf{X}]$  for  $\mathbf{X} \sim \pi$ , where  $\pi$  is a symmetric density on  $\mathbb{R}^d$ . Here, symmetry is with respect to reflection through the *center point*  $\mathbf{c}$  of  $\mathbb{R}^d$ .

## Antithetic sampling: estimator

- If we reflect  $\mathbf{x}$  through  $\mathbf{c}$ , we have  $\tilde{\mathbf{x}} - \mathbf{c} = -(\mathbf{x} - \mathbf{c})$ , and we get the point  $\tilde{\mathbf{x}} = 2\mathbf{c} - \mathbf{x}$ . For basic examples, when  $\pi = \mathcal{N}(\mathbf{0}, \Sigma)$  then  $\tilde{\mathbf{x}} = -\mathbf{x}$ . When  $\pi = \mathcal{U}(0, 1)^d$ , we have  $\tilde{\mathbf{x}} = 1 - \mathbf{x}$  (componentwise).
- The antithetic sampling estimate of  $\mu$  is:

$$\mu \approx \hat{\mu}_{\text{anti}} = \frac{1}{n} \sum_{i=1}^{n/2} f(\mathbf{x}_i) + f(\tilde{\mathbf{x}}_i), \quad (1)$$

where  $\mathbf{x}_i \stackrel{\text{iid}}{\sim} \pi$  and  $n$  is an even number. This estimator is also **unbiased**.

- The rationale for antithetic sampling is that each value of  $\mathbf{x}$  is *balanced* by its opposite  $\tilde{\mathbf{x}}$ , satisfying  $(\mathbf{x} + \tilde{\mathbf{x}})/2 = \mathbf{c}$ .

## Antithetic sampling

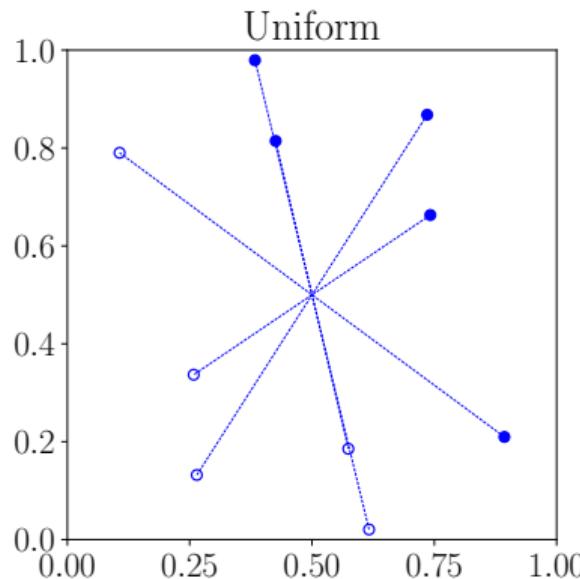
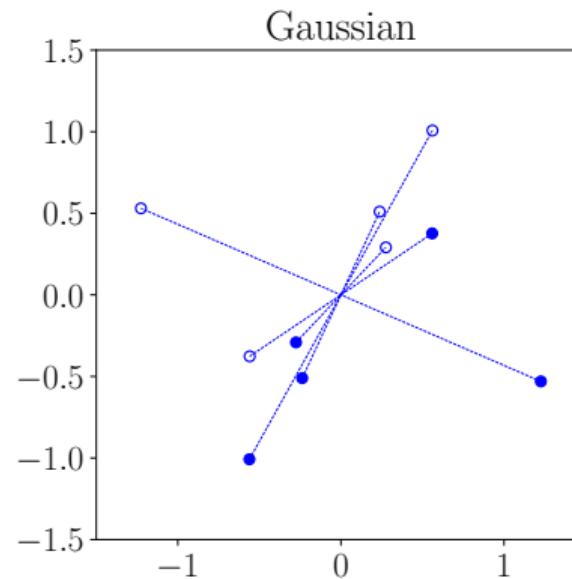


Figure: Five points and their antithetics. Left: from a standard uniform. Right: from a standard Gaussian.

## Antithetic sampling: variance

- Whether the balance is helpful or not depends on  $f$ . If  $f$  is nearly linear, we could obtain a large improvement.
- The variance of antithetic sampling is:

$$\mathbb{V}[\hat{\mu}_{\text{anti}}] = \mathbb{V} \left[ \frac{1}{n} \sum_{i=1}^{n/2} f(\mathbf{x}_i) + f(\tilde{\mathbf{x}}_i) \right] = \frac{n/2}{n^2} \mathbb{V} \left[ f(\mathbf{X}) + f(\tilde{\mathbf{X}}) \right] \quad (2)$$

$$= \frac{1}{2n} \left( \mathbb{V}[f(\mathbf{X})] + \mathbb{V}[f(\tilde{\mathbf{X}})] + 2\text{Cov} \left[ f(\mathbf{X}), f(\tilde{\mathbf{X}}) \right] \right) = \frac{\sigma^2}{n} (1 + \rho) \quad (3)$$

- Since  $-1 \leq \rho \leq 1$ , we obtain  $0 \leq \sigma^2(1 + \rho) \leq 2\sigma^2$ . In the best case, antithetic sampling gives the exact answer from just one pair of function evaluations. In the worst case, it doubles the variance.

## Antithetic sampling: when it works?

- Hence, the variance of standard MC and antithetics can be written as:

$$\begin{bmatrix} \mathbb{V}[\hat{\mu}] \\ \mathbb{V}[\hat{\mu}_{\text{anti}}] \end{bmatrix} = \frac{1}{n} \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} \sigma_e^2 \\ \sigma_o^2 \end{bmatrix}; \quad (4)$$

antithetic sampling eliminates the variance of  $f_o$  but doubles the contribution from  $f_e$ .

- Tip:** antithetic sampling reduces the variance if  $\rho < 0$  (e.g., monotone function), or equivalently if  $\sigma_o^2 > \sigma_e^2$ . This analysis is appropriate when the most of the computation is in evaluating  $f$ .
- Because antithetic samples have dependent values within pairs. We can define  $y_i = f_e(\mathbf{x}_i) = (f(\mathbf{x}_i) + f(\tilde{\mathbf{x}}_i))/2$ , for  $i = 1, \dots, m = n/2$ , then

$$\hat{\mu}_{\text{anti}} = \frac{1}{m} \sum_{i=1}^m y_i, \quad \sigma_{\text{anti}}^2 = \frac{1}{m-1} \sum_{i=1}^m (y_i - \hat{\mu}_{\text{anti}})^2. \quad (5)$$

## Antithetic sampling: example (I)

Consider the expected logarithmic return of a portfolio:

- There are  $K$  stocks and the portfolio has proportion  $\lambda_k \geq 0$  in stock  $k$ , with  $\sum_{k=1}^K \lambda_k = 1$ .
- The expected logarithmic return is defined as

$$\mu(\lambda) = \mathbb{E} \left[ \log \left( \sum_{k=1}^K \lambda_k \exp(X_k) \right) \right], \quad (6)$$

where  $\mathbf{X} \in \mathbb{R}^K$  is the vector of returns.

- If one keeps reinvesting/rebalancing the portfolio at  $N$  regular time intervals then, by the LLN, our fortune grows as  $\exp(N\mu + \mathcal{O}(N))$ , assuming of course that the  $\mathbf{X}$  for each time period are iid.

## Antithetic sampling: example (II)

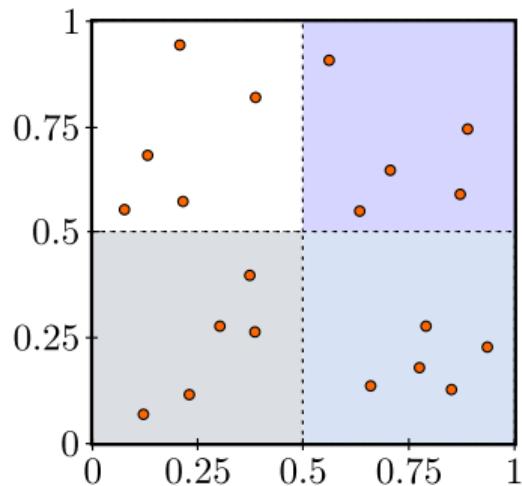
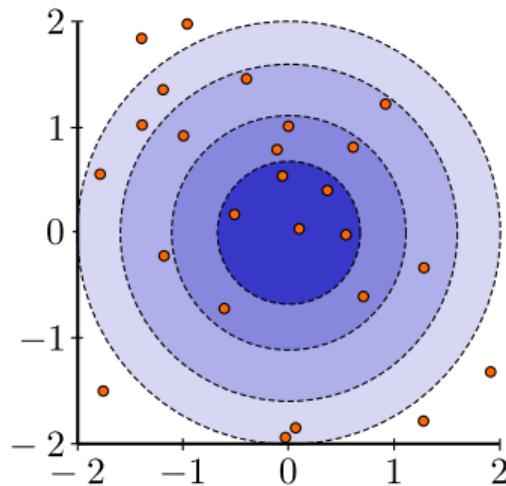
- The log-optimal choice  $\lambda$  is the allocation that maximizes  $\mu$ . Finding a model for the distribution of  $\mathbf{X}$  and then choosing  $\lambda$  are challenging problems. We focus on the problem of evaluating  $\mu(\lambda)$  for a given  $\lambda$ .
- We take  $\lambda_k = 1/K$  with  $K = 500$ . We also suppose that each marginal distribution is  $X_k \sim \mathcal{N}(\delta, \sigma^2)$  but that  $\mathbf{X}$  has the  $t(0, \nu, \Sigma)$  copula. Here  $\delta = 0.001$  and  $\sigma = 0.03$  ( $\approx$  one week time frame). And  $\nu = 4$  with covariance is  $\Sigma = \rho \mathbf{1}_K \mathbf{1}_K^\top + (1 - \rho) \mathbf{I}_K^\top$  for  $\rho = 0.3$ .
- Letting  $f(\mathbf{X}) = \log \left( \sum_{k=1}^K \exp(X_k) / K \right)$ , the MC estimate is  $\hat{\mu} = 1/n \sum_{i=1}^n f(\mathbf{X}_i)$ .
- The antithetic to  $\mathbf{X}_i$  has components  $\tilde{X}_{ik} = 2\delta - X_{ik}$ .
- Continue on code...



## Stratified sampling: intro

- The idea in stratified sampling is to split up the domain  $D$  of  $\mathbf{X}$  into separate regions, take a sample of points from each region, and combine the results.
- We might do better by *oversampling* within the important strata and *undersampling* those in which  $f$  is nearly constant.
- To use stratified sampling, we must know the sizes  $\omega_j = \mathbb{P}[\mathbf{X} \in D_j]$  of the strata, and we must also know how to sample  $\mathbf{X} \sim \pi_j$  for  $j = 1, \dots, J$ .
- When we are defining strata, we naturally prefer ones we can sample from. If however, we know  $\omega_j$  but are unable to sample from  $\pi_j$ , then we use *post-stratification*.

## Stratified sampling



**Figure:** Left: 20 points in  $[0, 1]^2$  of which 5 are sampled uniformly from within each quadrants ( $J = 4$ ). Right: 25 points from a standard Gaussian. There are 4 concentric rings separating the distribution into  $J = 5$  equally probable strata with 3 points sampled from each.

## Stratified sampling: estimator

- Let  $X_{ij} \sim \pi_j$  for  $i = 1, \dots, n_j$  and  $j = 1, \dots, J$  be sampled independently. The **stratified sampling** estimate is

$$\mu \approx \hat{\mu}_{\text{strat}} = \sum_{j=1}^J \frac{\omega_j}{n_j} \sum_{i=1}^{n_j} f(X_{ij}); \quad (7)$$

this estimator is also **unbiased**.

- As done previously for antithetic sampling, we now study the variance of the estimator  $\hat{\mu}_{\text{strat}}$  to determine when stratification is advantageous, and to see how to design an effective stratification.
- We define  $\mu_j = \mathbb{E}_{\pi_j}[f(x)]$  and  $\sigma_j^2 = \mathbb{V}_{\pi_j}[f(x)]$  to be the  $j$ th stratum mean and variance, respectively.

## Stratified sampling: variance

- The variance of the stratified sampling estimate is

$$\mathbb{V}[\hat{\mu}_{\text{strat}}] = \sum_{j=1}^J \omega_j^2 \frac{\sigma_j^2}{n_j}; \quad (8)$$

an immediate consequence is that  $\mathbb{V}[\hat{\mu}_{\text{strat}}] = 0$  for integrands  $f$  that are constant within strata  $D_j$ .

- The variance of  $f(\mathbf{X})$  can be decomposed into within- and between-stratum components<sup>2</sup>

$$\sigma^2 = \mathbb{V}[f(\mathbf{X})] = \mathbb{E}[\mathbb{V}[f(\mathbf{X} \mid Z)]] + \mathbb{V}[\mathbb{E}[f(\mathbf{X} \mid Z)]], \quad Z = 1, \dots, J \quad (9a)$$

$$= \sum_{j=1}^J \omega_j \sigma_j^2 + \sum_{j=1}^J \omega_j (\mu_j - \mu)^2 = \sigma_A^2 + \sigma_B^2; \quad (9b)$$

---

<sup>2</sup>

See this [Link](#) to check this property of the variance.

## Stratified sampling: post-stratification (proportional)

- **Post-stratification:** if we know  $\omega_j$  but we cannot sample  $X \sim \pi_j$ . The idea is to sample  $X_i \sim \pi$  and assign it to their strata afterwards. The estimators remain the same.
- The main difference is that  $n_j$  are now random. A natural choice for stratum sample sizes is **proportional allocation**,  $n_j = n\omega_j$ . In this case, the estimators reduce to

$$\hat{\mu}_{\text{strat,p}} = \frac{1}{n} \sum_{j=1}^J \sum_{i=1}^{n_j} f(\mathbf{X}_{ij}) \quad \sigma_{\text{strat,p}}^2 = \frac{1}{n} \sum_{j=1}^J \omega_j \sigma_j^2. \quad (10)$$

- We can compare iid and proportional stratification in one equation

$$\begin{bmatrix} \mathbb{V}[\hat{\mu}] \\ \mathbb{V}[\hat{\mu}_{\text{strat,p}}] \end{bmatrix} = \frac{1}{n} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \sigma_A^2 \\ \sigma_B^2 \end{bmatrix}; \quad (11)$$

- **Tips:** a good stratification scheme is one that reduces the within-stratum variance  $\sigma_A^2$ , ideally  $\sigma_B^2 \gg \sigma_A^2$ . If sampling from  $\pi_j$  is slower than sampling from  $\pi$ , we lose any efficiency gain from stratification.

## Stratified sampling: post-stratification (non-proportional)

- A proportional allocation is not necessarily the most efficient. Optimal sample allocation can be achieved using **Neyman allocation**, and the formulation allows for unequal sampling costs from the different strata.
- To minimize variance, we use

$$n_j \propto \frac{\omega_j \sigma_j}{\sqrt{c_j}}, \quad (12)$$

where  $c_j$  is the (expected) cost to generate  $\mathbf{X}$  from  $\pi_j$  and then compute  $f(\mathbf{X})$ .

- Non-proportional allocations carry some risk. The optimal allocation can be worse than the proportional allocation discussed before.
- There are also results on how to construct optional strata. In general, we want strata within which  $f$  is as flat as possible.

## Stratified sampling: example (I)

Compound Poisson models (random process with jumps) are commonly used for rainfall:

- The number of rainfall events (storms) in the coming month is  $S \sim \text{Poi}(\lambda)$  with  $\lambda = 2.9$ .
- The depth of rainfall in a storm  $s$  is  $d_s \sim \text{Weib}(k, \sigma)$  with shape  $k = 0.8$  and scale  $\sigma = 3$  (cm) and the storms are independent.
- If the total rainfall is below 5 centimeters then an emergency water allocation will be imposed. The total rainfall is  $X = \sum_{s=1}^S d_s$  taking the value 0 when  $S = 0$ .
- It is easy to get the mean and variance, but here we want  $\mathbb{P}[X < 5]$ , that is  $\mathbb{E}[f(\mathbf{X})]$  where  $f(\mathbf{X}) = \mathbb{1}_{X < 5}$ .
- Continue in code...

## Stratified sampling: example (II)

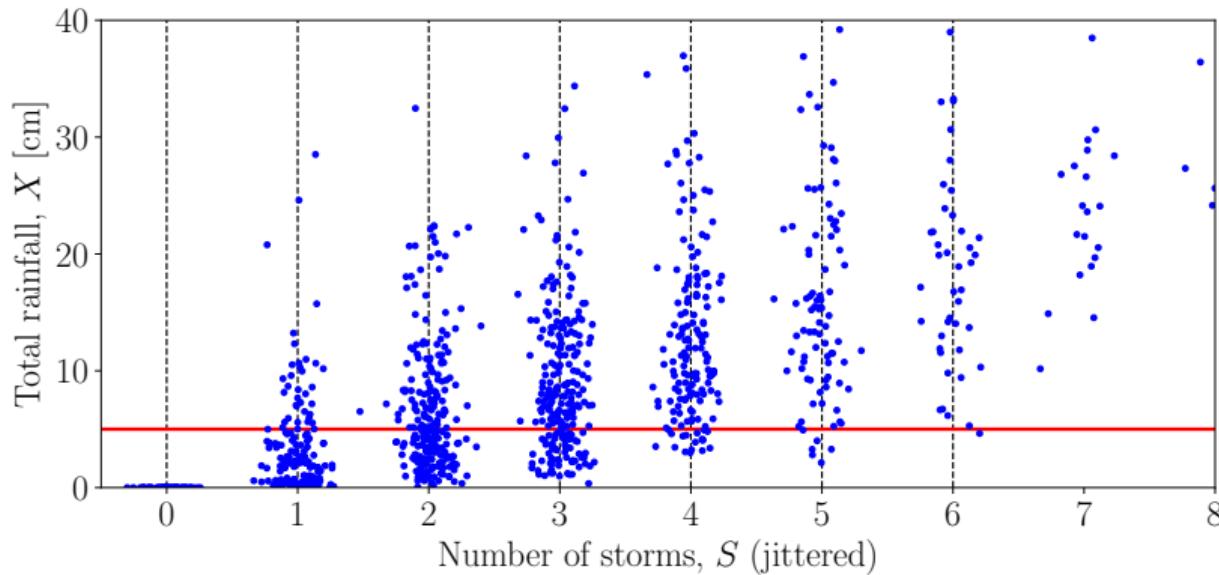


Figure: 1000 simulations of the compound Poisson model for rainfall. We define 7 strata.



## Common random numbers: intro and estimator

- Suppose that  $f$  and  $g$  are closely related functions and that we want to find  $\mathbb{E}[f(\mathbf{x}) - g(\mathbf{x})]$  for  $\mathbf{x} \sim \pi$ .
- Maybe  $f(\mathbf{x}) = h(\mathbf{x}; \boldsymbol{\theta})$  with a parameter  $\boldsymbol{\theta} \in \mathbb{R}^m$ . To study its effect, we look at  $g(\mathbf{x}) = h(\mathbf{x}; \tilde{\boldsymbol{\theta}})$ , for some  $\tilde{\boldsymbol{\theta}} \neq \boldsymbol{\theta}$ .
- Because  $\mathbb{E}[f(\mathbf{X}) - g(\mathbf{X})] = \mathbb{E}[f(\mathbf{X})] - \mathbb{E}[g(\mathbf{X})]$ , we have two options:

$$\hat{D}_{\text{com}} = \frac{1}{n} \sum_{i=1}^n f(\mathbf{X}_i) - g(\mathbf{X}_i), \quad \hat{D}_{\text{ind}} = \frac{1}{n_1} \sum_{i=1}^{n_1} f(\mathbf{X}_{i1}) - \frac{1}{n_2} \sum_{i=1}^{n_2} g(\mathbf{X}_{i2}), \quad (13)$$

where  $\mathbf{X}_i \sim \pi$  (left: common random numbers (CRN)) and  $\mathbf{X}_{ij} \sim \pi$  (right: independent random numbers).

## Common random numbers: variance

- Taking  $n = n_1 = n_2$ , the sample variances are :

$$\mathbb{V}[\widehat{D}_{\text{com}}] = \frac{1}{n} (\sigma_f^2 + \sigma_g^2 - 2\rho\sigma_f\sigma_g), \quad \mathbb{V}[\widehat{D}_{\text{ind}}] = \frac{1}{n} (\sigma_f^2 + \sigma_g^2). \quad (14)$$

- When  $\rho > 0$ , we are better off using common random numbers. Retaining some common random numbers requires considerable care in synchronization.
- The same problem arises if we are comparing  $\mathbb{E}[f(\mathbf{X})]$  for  $\mathbf{X} \sim \pi$  and  $\mathbb{E}[\widetilde{f}(\widetilde{\mathbf{X}})]$  for  $\widetilde{\mathbf{X}} \sim \pi$ .
- **Application:** CRN applies when we are comparing two or more alternative configurations (of a system) instead of investigating a single configuration.

## Common random numbers: couplings

- **Example:** if a first simulation has  $X_i \stackrel{\text{idd}}{\sim} \mathcal{N}(\mu, \sigma^2)$  and a second has  $\tilde{X}_i \stackrel{\text{idd}}{\sim} \mathcal{N}(\tilde{\mu}, \tilde{\sigma}^2)$ , then we can sample  $Z_i \stackrel{\text{idd}}{\sim} \mathcal{N}(0, 1)$  and use

$$\hat{D}_{\text{com}} = \frac{1}{n} \sum_{i=1}^n f(\mu + \sigma Z_i) - f(\tilde{\mu} + \tilde{\sigma} Z_i). \quad (15)$$

- More generally, when  $\mathbf{X}_i$  is generated via a transformation  $T(\mathbf{U}_i; \theta)$  of  $\mathbf{U}_i \sim \mathcal{U}(0, 1)^d$ , then we can average  $f(T(\mathbf{U}_i; \theta)) - f(T(\mathbf{U}_i; \tilde{\theta}))$ .
- The construction above is a **coupling** of the random vectors  $\mathbf{X}$  and  $\tilde{\mathbf{X}}$ . Any joint distribution on  $(\mathbf{X}, \tilde{\mathbf{X}})$  with  $\mathbf{X} \sim \pi$  and  $\tilde{\mathbf{X}} \sim \tilde{\pi}$  is a coupling.

## Common random numbers: implementation

- We want to estimate  $\mu_j = \mathbb{E}[h(\mathbf{X}; \theta_j)]$ , for  $j = 1, \dots, m$  and using  $n$  random inputs  $\{\mathbf{X}_i\}_{i=1}^n$ . In the simplest case,  $m = 2$  and we are interested in  $\mu_1 - \mu_2$ .
- We can run a nested loop over samples indexed by  $i$  and parameter values indexed by  $j$ . There are two main approaches that we can take, depending on which is the outer loop.
- CRN requires *synchronization* of the random number streams, which ensures that in addition to using the same random numbers to simulate all configurations, a specific random number used for a specific purpose in one configuration is used for exactly the same purpose in all other configurations.

## Common random numbers: algorithms

---

### Algorithm 1: Version 1: common random numbers

---

```
1 setseed(seed);
2  $\hat{\mu}_j = 0, 1 \leq j \leq m;$ 
3 for  $i = 1$  to  $n$  do
4    $\mathbf{X}_i \sim \pi;$ 
5    $\hat{\mu}_j = \hat{\mu}_j + h(\mathbf{X}_i; \theta_j), 1 \leq j \leq m;$ 
6 end
7  $\hat{\mu}_j = \hat{\mu}_j / n, 1 \leq j \leq m;$ 
```

---

### Algorithm 2: Version 2: common random numbers

---

```
1 for  $j = 1$  to  $m$  do
2   setseed(seed);
3    $\hat{\mu}_j = 0;$ 
4   for  $i = 1$  to  $n$  do
5      $\mathbf{X}_i \sim \pi;$ 
6      $\hat{\mu}_j = \hat{\mu}_j + h(\mathbf{X}_i; \theta_j);$ 
7   end
8    $\hat{\mu}_j = \hat{\mu}_j / n;$ 
9 end
```

---

## Variance reduction: type-2 methods (“using things we know”)

## Conditioning: intro and estimator

- Sometimes we can do part of the problem in closed form, and then do the rest of it by MC or some other numerical method.
- Assume that  $\mathbf{X} \in \mathbb{R}^k$  and  $\mathbf{Y} \in \mathbb{R}^{d-k}$  are random vectors and we want to estimate  $\mathbb{E}[f(\mathbf{X}, \mathbf{Y})]$ . The standard estimator is  $\hat{\mu} = 1/n \sum_{i=1}^n f(\mathbf{X}_i, \mathbf{Y}_i)$ , where  $(\mathbf{X}_i, \mathbf{Y}_i) \in \mathbb{R}^d$  are independent samples from the joint distribution.
- Define  $h(\mathbf{x}) = \mathbb{E}[f(\mathbf{X}, \mathbf{Y}) \mid \mathbf{X} = \mathbf{x}]$ , then we can also estimate<sup>3</sup>:

$$\hat{\mu}_{\text{cond}} = \frac{1}{n} \sum_{i=1}^n h(\mathbf{X}_i), \tag{16}$$

where  $\mathbf{X}_i$  are sampled independently from the distribution of  $\mathbf{X}$ . This method is called **conditioning** or **conditional Monte Carlo**.

---

<sup>3</sup>

Note that  $\mathbb{E}[f(\mathbf{X}, \mathbf{Y})] = \mathbb{E}[\mathbb{E}[f(\mathbf{X}, \mathbf{Y}) \mid \mathbf{X}]] = \mathbb{E}[h(\mathbf{X})]$ .

## Conditioning: variance

- The variance of the conditional MC estimator is:

$$\mathbb{V}[\hat{\mu}_{\text{cond}}] = \frac{1}{n} \mathbb{V}[h(\mathbf{X})] = \frac{1}{n} \mathbb{V}[\mathbb{E}[f(\mathbf{X}, \mathbf{Y}) \mid \mathbf{X}]] . \quad (17)$$

- From the properties of the variance, we know:

$$\mathbb{V}[f(\mathbf{X}, \mathbf{Y})] = \mathbb{E}[\mathbb{V}[f(\mathbf{X}, \mathbf{Y}) \mid \mathbf{X}]] + \mathbb{V}[\mathbb{E}[f(\mathbf{X}, \mathbf{Y}) \mid \mathbf{X}]] ; \quad (18)$$

hence, conditional Monte Carlo cannot have higher variance than crude MC sampling of  $f$ .

- Conditioning is a special case of de-randomization which is sometimes called **Rao–Blackwellization**.
- De-randomization by conditioning always reduces variance, it is not always worth doing. We could find our estimate is less efficient, if computing  $h$  costs much more than  $f$ .

## Conditioning: example

- Let  $C = \{(x, y) \mid a \leq x \leq b, 0 \leq y \leq f(x)\}$  and assume that  $f(x) \leq c$  holds for  $x \in [a, b]$ . Then the MC estimate of the integral is

$$\widehat{\text{vol}}(C) = \frac{c(b-a)}{n} \sum_{i=1}^n \mathbb{1}_{Y_i \leq f(X_i)}, \quad (X_i, Y_i) \sim \mathcal{U}([a, b] \times [0, c]). \quad (19)$$

- The conditional expectation is:

$$h(x) = \mathbb{E}[f(X, Y) \mid X = x] = \frac{1}{\pi_X(x)} \int_{-\infty}^{\infty} \mathbb{1}_{Y \leq f(x)} \pi_{XY}(x, y) dy = \frac{f(x)}{c}. \quad (20)$$

- Conditioning yields the estimate:

$$\widehat{\text{vol}}(C) = \frac{c(b-a)}{n} \sum_{i=1}^n \frac{f(X_i)}{c} = \frac{(b-a)}{n} \sum_{i=1}^n f(X_i). \quad (21)$$

## Conditioning: final comments

- Conditioning can be used in combination with other variance reduction methods. The most straightforward way is to apply those other methods to the problem of estimating  $\mathbb{E}[h(\mathbf{X})]$ .
- The combination of conditioning with stratified and/or antithetic sampling is simple, provided that the distribution of  $\mathbf{X}$  is amenable to stratification or has some natural symmetry that we can exploit in antithetic sampling.
- Conditioning brings a dimension reduction in addition to the variance reduction, because the dimension  $k$  of  $\mathbf{X}$  is smaller than the dimension  $d$  of  $(\mathbf{X}, \mathbf{Y})$ .
- In the Rao–Blackwell theorem, the quantity being conditioned on has to obey quite stringent conditions. Those conditions are usually not needed in MC applications.



## Control variates: intro

- Control variates provide a way to exploit closed form results. With control variates we use some other problem, quite similar to our given one, but for which an exact answer is known.
- Suppose first that we want to find  $\mu = \mathbb{E}[f(\mathbf{X})]$  and that we know the value  $\theta = \mathbb{E}[h(\mathbf{X})]$ , where  $h(\mathbf{X}) \approx f(\mathbf{X})$ . Using the MC estimators for each of these quantities:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^n f(\mathbf{X}_i) \quad \hat{\theta} = \frac{1}{n} \sum_{i=1}^n h(\mathbf{X}_i) \quad (22)$$

we can estimate  $\mu$ , using the (unbiased) **difference estimator**:

$$\hat{\mu}_{\text{diff}} = \frac{1}{n} \sum_{i=1}^n (f(\mathbf{X}_i) - h(\mathbf{X}_i)) + \theta = \hat{\mu} - \hat{\theta} + \theta. \quad (23)$$

## Control variates: estimators

- The variance of the difference estimator is

$$\mathbb{V}[\hat{\mu}_{\text{diff}}] = \frac{1}{n} \mathbb{V}[f(\mathbf{X}) - h(\mathbf{X})]. \quad (24)$$

- If  $h$  is similar to  $f$  in the sense that the difference  $f(\mathbf{X}) - h(\mathbf{X})$  has smaller variance than  $f(\mathbf{X})$ , we will reduce the variance. In this setting,  $h(\mathbf{X})$  is called the **control variate**.
- The difference estimator is not the only way to use a control variate. The ratio and product estimators are also used:

$$\hat{\mu}_{\text{ratio}} = \frac{\hat{\mu}}{\hat{\theta}} \theta \quad \hat{\mu}_{\text{prod}} = \frac{\hat{\mu}\hat{\theta}}{\theta}; \quad (25)$$

however, the ratio and product estimators are usually biased.

## Control variates: regression estimator (I)

- By far the most common way of using a control variate is through the regression. For a value  $\beta \in \mathbb{R}$ , the (unbiased) regression estimator of  $\mu$  is:

$$\hat{\mu}_\beta = \frac{1}{n} \sum_{i=1}^n (f(\mathbf{X}_i) - \beta h(\mathbf{X}_i)) + \beta \theta = \hat{\mu} - \beta(\hat{\theta} - \theta); \quad (26)$$

note that  $\beta = 0$  gives standard MC and  $\beta = 1$  yields the difference estimator.

- The variance of this estimator is:

$$\mathbb{V}[\hat{\mu}_\beta] = \frac{1}{n} (\mathbb{V}[f(\mathbf{X})] - 2\beta \text{Cov}[f(\mathbf{X}), h(\mathbf{X})] + \beta^2 \mathbb{V}[h(\mathbf{X})]). \quad (27)$$

- **Intuition:** control variates create a new random vector  $\mathbf{Z} = f(\mathbf{X}) + \beta(h(\mathbf{X}) - \theta)$ , that allows us to leverage  $\theta$  in order to compute  $\mathbb{E}[f(\mathbf{X})]$  in an easier way.

## Control variates: regression estimator (II)

- We can find the optimal value of  $\beta$  as:

$$\beta_{\text{opt}} = \arg \min_{\beta} \mathbb{V}[\hat{\mu}_{\beta}] = \frac{\text{Cov}[f(\mathbf{X}), h(\mathbf{X})]}{\mathbb{V}[h(\mathbf{X})]} \quad \text{and} \quad \mathbb{V}[\hat{\mu}_{\beta_{\text{opt}}}] = \frac{\sigma^2}{n}(1 - \rho^2); \quad (28)$$

note that in the regression estimator, any control variate that correlates with  $f$  is helpful, even one that correlates negatively.

- Since we do not know  $\beta_{\text{opt}}$  in practice, it can be estimated as

$$\beta_{\text{opt}} \approx \hat{\beta} = \frac{\sum_{i=1}^n (f(\mathbf{X}_i) - \hat{\mu})(h(\mathbf{X}_i) - \hat{\theta})}{\sum_{i=1}^n (h(\mathbf{X}_i) - \hat{\theta})^2}; \quad (29)$$

note that the estimator  $\hat{\mu}_{\hat{\beta}}$  is no longer unbiased. But the bias is very small !

## Control variates: regression estimator (III)

- The estimated variance of  $\hat{\mu}_{\hat{\beta}}$  is

$$\hat{\sigma}_{\hat{\beta}}^2 = \mathbb{V}[\hat{\mu}_{\hat{\beta}}] = \frac{1}{n^2} \sum_{i=1}^n \left( f(\mathbf{X}_i) - \hat{\mu}_{\hat{\beta}} - \hat{\beta}(h(\mathbf{X}_i) - \hat{\theta}) \right)^2. \quad (30)$$

and a 99% confidence interval is  $\hat{\mu}_{\hat{\beta}} \pm 2.58 \hat{\sigma}_{\hat{\beta}}$ .

- The variance with a control variate is **never worse** than the MC one. Whether the control variate is helpful ultimately depends on **how much it costs to use it**.
- A significant advantage of the regression estimator is that it generalizes easily to handle multiple control variates. The potential value is greatest when  $f$  is expensive but is approximately equal to a linear combination of inexpensive control variates.

## Control variates: example I

Let's compute the integral:

$$I = \int_0^{\pi/4} \int_0^{\pi/4} f(x, y) \, dx \, dy, \quad (31)$$

where  $f(\mathbf{X}) = f(x, y) = x^2 y^2 \sin(x + y) \log(x + y)$ .

We are going to use the control variate  $h(\mathbf{X}) = h(x, y) = x^2 y^2$ , for which we know the integral is equal to  $\theta = ((\pi/4)^6)/9$ .

Continue in code...

## Control variates: example II

- Consider one of the target applications, where  $f(\mathbf{U})$  is the forward model solution at location  $L/2$  and  $\mathbf{U} \in \mathbb{R}^3$  is standard Gaussian.
- We can define a control variate to estimate the mean  $\mathbb{E}[f(\mathbf{U})]$ . For instance, a linearization of the map  $\mathbf{U} \mapsto f(\mathbf{U})$ . This coarse model  $Y = h(\mathbf{U})$ , is given by a multivariate linear regression:

$$Y_i = c_0 + \sum_{j=1}^d c_j U_{i,j} + \eta_i, \quad i = 1, \dots, n \quad (32)$$

here,  $Y_i$  is the response for the  $i$ -th observation,  $c_0$  is the regression intercept,  $c_j$  is the  $j$ -th predictor regression,  $X_{i,j}$  is the  $j$ -th predictor for the  $i$ -th observation, and  $\eta_j$  is a Gaussian error term. Here,  $n$  is the number of observations used to train the regression.

- Using the ordinary least squares, the coefficients are  $\mathbf{c} = (\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T \mathbf{Y}$ . The mean of the control variate is  $\theta = \mathbb{E}[\mathbf{U} \mathbf{c}] = c_0$ .  
Continue in code...

## **Variance reduction: type-3 methods (“using auxiliary densities”)**

## Importance sampling: intro

- In many applications, we want to compute  $\mu = \mathbb{E}[f(\mathbf{X})]$  where  $f(\mathbf{X})$  is nearly zero outside a region  $A$ . The set  $A$  may have small volume, or it may be in the tail of the  $\mathbf{X}$  distribution. A plain MC sample from  $\pi$  could fail to have even one point inside  $A$ .
- We must get some samples from the region  $A$ . We do this by sampling from a distribution that over-weights the important region, hence the name **importance sampling** (IS) [1].
- IS is more than just a variance reduction method. It can be used to study one distribution while sampling from another. As a result, we can use IS as an alternative to acceptance-rejection.
- IS is also an important prerequisite for *sequential Monte Carlo*, one of the state-of-the-art Bayesian inference techniques.

## Importance sampling: intro

- Consider again the problem of finding  $\mathbb{E}_\pi[f(\mathbf{X})]$ :

$$\mu = \int_{\mathbb{R}^d} f(\mathbf{x})\pi(\mathbf{x}) \, d\mathbf{x} = \int_{\mathbb{R}^d} \frac{f(\mathbf{x})\pi(\mathbf{x})}{\pi_{\text{bias}}(\mathbf{x})} \pi_{\text{bias}}(\mathbf{x}) \, d\mathbf{x} = \mathbb{E}_{\pi_{\text{bias}}} \left[ f(\mathbf{x}) \frac{\pi(\mathbf{x})}{\pi_{\text{bias}}(\mathbf{x})} \right], \quad (33)$$

where  $\pi_{\text{bias}}$  is the so-called importance or *biasing density* ( $\text{supp}(f(\mathbf{x})\pi(\mathbf{x})) \subseteq \text{supp}(f(\mathbf{x})\pi_{\text{bias}}(\mathbf{x}))$ ). Moreover, the adjustment factor  $\pi(\mathbf{x})/\pi_{\text{bias}}(\mathbf{x})$  is called the *likelihood ratio*.

- The variance  $\sigma^2 = \mathbb{V}_\pi[f(\mathbf{X})]$  can be written analogously as:

$$\sigma_{\text{IS}}^2 = \int_{\mathbb{R}^d} \frac{(f(\mathbf{x})\pi(\mathbf{x}))^2}{\pi_{\text{bias}}(\mathbf{x})} \, d\mathbf{x} - \mu^2 = \mathbb{E}_{\pi_{\text{bias}}} \left[ \frac{(f(\mathbf{x})\pi(\mathbf{x}) - \mu\pi_{\text{bias}}(\mathbf{x}))^2}{\pi_{\text{bias}}^2(\mathbf{x})} \right]. \quad (34)$$

## Importance sampling: estimators

- The IS estimate of  $\mu$  is

$$\mu \approx \hat{\mu}_{\text{IS}} = \frac{1}{n} \sum_{i=1}^n f(\mathbf{X}_i) w(\mathbf{X}_i) \quad \text{with} \quad w(\mathbf{X}_i) = \frac{\pi(\mathbf{X}_i)}{\pi_{\text{bias}}(\mathbf{X}_i)}, \quad (35)$$

where  $\{\mathbf{X}_i\}_{i=1}^n \stackrel{\text{iid}}{\sim} \pi_{\text{bias}}$ , and each value  $w(\mathbf{X}_i)$  represents a *weight* that corrects for the use of the biasing density and ensures that the IS estimator remains unbiased, i.e.,  $\mathbb{E}_{\pi_{\text{bias}}}[\hat{\mu}_{\text{IS}}] = \mu$ .

- Moreover, the variance of the IS estimator is

$$\begin{aligned} \mathbb{V}_{\pi_{\text{bias}}}[\hat{\mu}_{\text{IS}}] &= \frac{1}{n} (\mathbb{E}_{\pi_{\text{bias}}}[(f(\mathbf{x})w(\mathbf{x}) - \mu)^2]) \\ &= \frac{1}{n} \left( \int_{\mathbb{R}^d} \frac{(f(\mathbf{x})\pi(\mathbf{x}))^2}{\pi_{\text{bias}}(\mathbf{x})} d\mathbf{x} - \mu^2 \right) = \frac{1}{n} (\mathbb{E}_{\pi_{\text{bias}}}[(f(\mathbf{x})w(\mathbf{x}))^2] - \mu^2). \end{aligned}$$

## Importance sampling: optimal biasing density (I)

- We can also approximate the 99% confidence interval for  $\mu$  similar to the MC case, i.e.,

$$\hat{\mu}_{\text{IS}} \pm 2.58 \frac{\hat{\sigma}_{\text{IS}}}{\sqrt{n}} \quad \text{where} \quad \hat{\sigma}_{\text{IS}}^2 = \frac{1}{n} \sum_{i=1}^n (f(\mathbf{X}_i)w(\mathbf{X}_i) - \hat{\mu}_{\text{IS}})^2. \quad (36)$$

## Importance sampling: optimal biasing density (I)

- We can also approximate the 99% confidence interval for  $\mu$  similar to the MC case, i.e.,

$$\hat{\mu}_{\text{IS}} \pm 2.58 \frac{\hat{\sigma}_{\text{IS}}}{\sqrt{n}} \quad \text{where} \quad \hat{\sigma}_{\text{IS}}^2 = \frac{1}{n} \sum_{i=1}^n (f(\mathbf{X}_i)w(\mathbf{X}_i) - \hat{\mu}_{\text{IS}})^2. \quad (39)$$

- To choose a good biasing distribution requires some educated guessing and possibly numerical search. **Rule:**  $\pi_{\text{bias}}$  should have tails at least as heavy as  $\pi$  (domination!).
- We can also try to find the optimal biasing density as follows. Aiming to reduce the variance, we require a  $\pi_{\text{bias}}$  such that,

$$\pi_{\text{bias}}^*(\mathbf{x}) = \arg \min_{\pi_{\text{bias}}} \mathbb{E}_{\pi_{\text{bias}}} [(f(\mathbf{x})w(\mathbf{x}))^2], \quad (37)$$

where  $\pi_{\text{bias}}^*$  is the so-called *optimal biasing density*.

## Importance sampling: optimal biasing density (II)

- The minimizer of eq. (37) can be found by applying Jensen's inequality

$$\mathbb{E}_{\pi_{\text{bias}}} [(f(\mathbf{x})w(\mathbf{x}))^2] \geq (\mathbb{E}_{\pi_{\text{bias}}} [|f(\mathbf{x})| w(\mathbf{x})])^2.$$

The relation is strict if  $|f(\mathbf{x})| w(\mathbf{x})$  is constant. Hence, the optimal biasing density, generating a zero-variance estimate, is given by

$$\pi_{\text{bias}}^*(\mathbf{x}) \propto |f(\mathbf{x})| \pi(\mathbf{x}) = \frac{1}{\mu} |f(\mathbf{x})| \pi(\mathbf{x}).$$

- Although zero-variance biasing densities are not usable, they provide insight into the design of a good IS scheme, e.g., the cross-entropy method.
- The likelihood ratio also reveals a dimension effect for IS. Some weights can become significantly larger than others.

## Importance sampling: example (I)

- We want to estimate the integral:

$$\int_0^{10} f(x) dx \quad \text{with} \quad f(x) = \exp(-2|x-5|). \quad (38)$$

- Problem with standard MC: this function is peaked at 5, and decays quickly elsewhere, therefore, under the uniform distribution ( $\pi = \mathcal{U}(0, 10)$ ), many of the points are contributing very little to this expectation.
- Something more like a Gaussian function with mean at 5 and small variance, say, 1, would provide greater precision:  $\pi_{\text{bias}} = \mathcal{N}(5, 1)$ . Hence:

$$\mathbb{E}_{\pi_{\text{bias}}}[f(x)w(x)] = \int_0^{10} 10 \exp(-2|x-5|) \frac{\frac{1}{10}}{\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-5)^2}{2}\right)} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-5)^2}{2}\right) dx. \quad (39)$$

- Continue in code...

## Importance sampling: example (II)

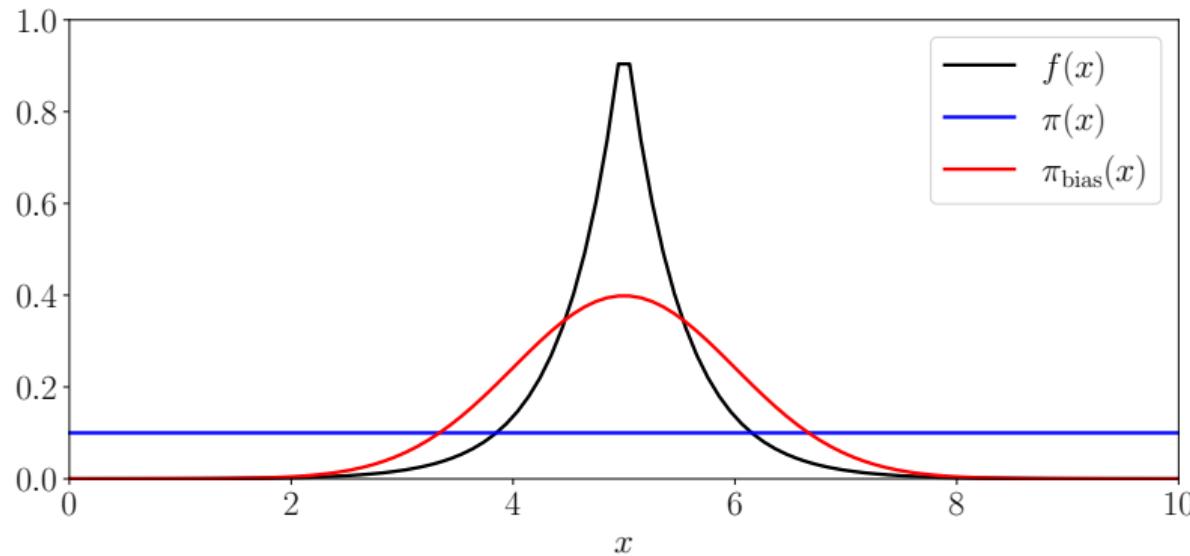


Figure: For the integration of  $f(x)$ , IS provided a substantial increase in precision. MC std  $\approx 2.02$ , IS std  $\approx 0.59$ .

## Importance sampling: self-normalized

- Sometimes we can only compute an unnormalized version of  $\pi$ ,  $\bar{\pi}(\mathbf{x}) = c_1 \pi(\mathbf{x})$  where  $c_1 > 0$  is unknown. The same may be true for the biasing density, i.e.,  $\bar{\pi}_{\text{bias}}(\mathbf{x}) = c_2 \pi_{\text{bias}}(\mathbf{x})$ , where  $c_2 > 0$  is unknown.
- In this case, we can compute the likelihood ratio  $\bar{w} = \bar{\pi}(\mathbf{x}) / \bar{\pi}_{\text{bias}}(\mathbf{x}) = (c_1/c_2)(\pi(\mathbf{x}) / \pi_{\text{bias}}(\mathbf{x}))$ , and use the **self-normalized IS** estimator:

$$\mu \approx \hat{\mu}_{\text{sIS}} = \frac{\sum_{i=1}^n f(\mathbf{X}_i) \bar{w}(\mathbf{X}_i)}{\sum_{i=1}^n \bar{w}(\mathbf{X}_i)}, \quad (40)$$

where  $\{\mathbf{X}_i\}_{i=1}^n \sim \pi_{\text{bias}}$ .

- The self-normalized IS estimator requires a stronger condition on  $\pi_{\text{bias}}$ . We now need  $\pi_{\text{bias}}(\mathbf{x}) > 0$  whenever  $\pi(\mathbf{x}) > 0$ , even if  $f(\mathbf{x})$  is zero with high probability.

## Importance sampling: diagnostics I

- IS uses unequally weighted samples. The weights are  $w_i = w(\mathbf{X}_i) = \pi(\mathbf{X}_i)/\pi_{\text{bias}}(\mathbf{X}_i) > 0$  for  $i = 1, \dots, n$ . We want to have a diagnostic to tell when the weights are problematic.
- A common metric is the **effective sample size**<sup>4</sup>:

$$n_{\text{ESS}} = \frac{\left(\sum_{i=1}^n w(\mathbf{x}_i)\right)^2}{\sum_{i=1}^n (w(\mathbf{x}_i))^2} = \frac{\left(\sum_{i=1}^n w_i\right)^2}{\sum_{i=1}^N w_i^2} = \frac{(\widetilde{W})^2}{\widetilde{W}^2}, \quad (41)$$

where  $\widetilde{W}$  denotes the sum of the weights,  $\widetilde{W}^2$  the sum of the squared weights, and  $1 \leq n_{\text{ESS}} \leq n$ .

- The weights are all the same when  $n_{\text{ESS}} = n$ . Conversely, if the weights are very unequal, the IS estimator is averaging only with  $n_{\text{ESS}} \ll n$  samples and thus it is less accurate.

---

<sup>4</sup>

A. B. Owen. *Monte Carlo theory, methods and examples*. [artowen.su.domains/mc/](http://artowen.su.domains/mc/), 2018, Ch.9 p.11.

## Importance sampling: diagnostics II

- Another way to express the  $n_{\text{ESS}}$  is via the coefficient of variation of the weights  $\text{cv}(\mathbf{w})$ :

$$n_{\text{ESS}} = \frac{n}{1 + (\text{cv}(\mathbf{w}))^2}, \quad (42)$$

where  $\mathbf{w} = \{w_i\}_{i=1}^n$  is the vector of weights. Again, if  $n_{\text{ESS}}$  is too small, we know  $\pi_{\text{bias}}$  produces imbalanced weights.

- Effective sample sizes are imperfect diagnostics: When they are **too small**, we have a sign that they are problematic. When they are large, we still cannot conclude that IS has worked.
- Moreover, **badly skewed** weights could give a badly estimated mean along with a bad variance estimate that masks the problem.
- We can also use the variance as a diagnostic. When it is quite large, we would conclude that IS has not worked well.

## Importance sampling: some comments

- IS and acceptance-rejection sampling are quite similar ideas.
- Some techniques used to find biasing densities are:
  - ▶ **Exponential tilting:** IS by changing the parameter  $\theta$  of a  $\pi_{\text{bias}}(\mathbf{x}; \theta)$  chosen from an exponential family.
  - ▶ **Modes and Hessians:** matching the Hessian of  $\pi_{\text{bias}}(\mathbf{x})$  to that of  $\pi(\mathbf{x})$  at the mode.
  - ▶ **Mixture IS:**  $\pi_{\text{bias}}(\mathbf{x})$  comes from a mixture distribution. Mixtures of unimodal densities provide a flexible approximation to multimodal targets.
  - ▶ **Defensive IS:** we take a  $\pi_{\text{bias}}(\mathbf{x})$  thought to be a good one and mix it with  $\pi(\mathbf{x})$ , i.e.,  $\pi_{\text{bias}}(\mathbf{x}; \alpha) = \alpha_1 \pi(\mathbf{x}) + \alpha_2 \pi_{\text{bias}}(\mathbf{x})$ .
  - ▶ **Cross-entropy method:** finds an optimal approximation in the Kullback–Leibler divergence sense.

## Importance sampling: cross-entropy method

- The standard *cross-entropy* (CE) method [3] considers the problem of approximating  $\pi_{\text{bias}}^*(\mathbf{x})$  by a *parametric biasing* density  $\pi_{\text{bias}}(\mathbf{x}; \boldsymbol{\theta})$ , with reference parameters  $\boldsymbol{\theta}$ .
- The approximation is selected from a family of densities  $\Pi = \{\pi_{\text{bias}}(\mathbf{x}; \boldsymbol{\theta}) \mid \boldsymbol{\theta} \in \Theta\}$  designed to be of simpler form than  $\pi_{\text{bias}}^*$ .
- Thereafter, the objective is to find  $\boldsymbol{\theta}^* \in \Theta$  such that the distance between the optimal and approximated biasing densities is minimal. The dissimilarity between these distributions is measured by the cross-entropy or Kullback–Leibler divergence (KLD)

$$\begin{aligned}
 D_{\text{KL}}(\pi_{\text{bias}}^* \parallel \pi_{\text{bias}}) &= \int_{\mathbb{R}^d} \ln \left( \frac{\pi_{\text{bias}}^*(\mathbf{x})}{\pi_{\text{bias}}(\mathbf{x}; \boldsymbol{\theta})} \right) \pi_{\text{bias}}^*(\mathbf{x}) d\mathbf{x} \\
 &= \int_{\mathbb{R}^d} \ln \pi_{\text{bias}}^*(\mathbf{x}) \pi_{\text{bias}}^*(\mathbf{x}) d\mathbf{x} - \int_{\mathbb{R}^d} \ln \pi_{\text{bias}}(\mathbf{x}; \boldsymbol{\theta}) \pi_{\text{bias}}^*(\mathbf{x}) d\mathbf{x}. \quad (43)
 \end{aligned}$$

## Importance sampling: cross-entropy method

- The first term in eq. (43) is invariant with respect to any choice of  $\pi_{\text{bias}}$  and the problem reduces to the optimization task:

$$\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{\pi_{\text{bias}}^*} [\ln \pi_{\text{bias}}(\mathbf{x}; \boldsymbol{\theta})], \quad (44)$$

where  $\boldsymbol{\theta}^*$  denotes the optimal reference parameters. We can substitute the optimal IS biasing density into eq. (44) to express the optimization program as

$$\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{\pi} [\ln \pi_{\text{bias}}(\mathbf{x}; \boldsymbol{\theta}) f(\mathbf{x})]. \quad (45)$$

- To efficiently evaluate eq. (45), we apply IS with biasing distribution  $\pi_{\text{bias}}(\mathbf{x}; \boldsymbol{\theta}') \in \Pi$ :

$$\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta} \in \Theta} \mathbb{E}_{\pi_{\text{bias}}(\cdot; \boldsymbol{\theta}')} [\ln \pi_{\text{bias}}(\mathbf{x}; \boldsymbol{\theta}) f(\mathbf{x}) w(\mathbf{x}; \boldsymbol{\theta}')] \quad \text{with} \quad w(\mathbf{x}; \boldsymbol{\theta}') = \frac{\pi(\mathbf{x})}{\pi_{\text{bias}}(\mathbf{x}; \boldsymbol{\theta}')}. \quad (46)$$

## Importance sampling: cross-entropy method

- We can further employ the IS estimator of the expectation in eq. (46) to define the stochastic optimization problem:

$$\boldsymbol{\theta}^* \approx \widehat{\boldsymbol{\theta}}^* = \arg \max_{\boldsymbol{\theta} \in \Theta} \mathcal{J}(\boldsymbol{\theta}) \quad \text{with} \quad \mathcal{J}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n \ln \pi_{\text{bias}}(\mathbf{X}_i; \boldsymbol{\theta}) f(\mathbf{X}_i) w(\mathbf{X}_i; \boldsymbol{\theta}'), \quad (47)$$

where  $\{\mathbf{X}_i\}_{i=1}^n \stackrel{\text{iid}}{\sim} \pi_{\text{bias}}(\cdot; \boldsymbol{\theta}')$ .

- If the biasing distribution belongs to the natural exponential family, the solution of the stochastic optimization problem can be computed analytically. For instance, if  $\Pi$  is a collection of Gaussian densities, the parameter  $\boldsymbol{\theta}$  is selected from the space  $\Theta$  containing mean vectors and covariance matrices.
- In this case, the reference parameter estimator  $\widehat{\boldsymbol{\theta}}^*$  has an explicit updating rule.

## Importance sampling: cross-entropy method

- One still requires a good initial choice of  $\theta'$ , such that a substantial number of samples from  $\pi_{\text{bias}}(\mathbf{x}; \theta')$  lie in the failure domain. This is addressed in the CE method by gradually approaching the optimal biasing density. The idea is to construct a sequence of intermediate sets  $\{\mathbf{x} \in \mathbb{R}^d : f(\mathbf{x}) \leq \gamma_j\}$ , with intermediate thresholds  $\gamma_j \geq 0$ .
- Starting from an initial reference parameter estimate  $\hat{\theta}_0$ , the sequential CE program reads

$$\hat{\theta}_{j+1} = \arg \max_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \ln \pi_{\text{bias}}(\mathbf{X}_i; \theta) \tilde{w}_i^{(j)} \quad \text{with} \quad \tilde{w}_i^{(j)} = f(\mathbf{X}_i) \frac{\pi(\mathbf{X}_i)}{\pi_{\text{bias}}(\mathbf{X}_i; \hat{\theta}_j)}, \quad (48)$$

where  $\{\mathbf{x}_i\}_{i=1}^n \stackrel{\text{iid}}{\sim} \pi_{\text{bias}}(\cdot; \hat{\theta}_j)$ .

- The CE optimization eq. (47) is now solved at each level with respect to an intermediate optimal biasing density  $\pi_{\text{bias},j}^*(\mathbf{x})$  associated to a threshold  $\gamma_j$ .

## Importance sampling: cross-entropy method

- Note that if  $\pi$  and  $\pi_{\text{bias}}$  belong to the same parametric family, the initial estimate of the reference parameters is typically selected as the parameters defining  $\pi$  (e.g., if Gaussian,  $\hat{\theta}_0 = [\mu, \Sigma]$ ).
- In the CE method,  $f(\mathbf{x})$  can be either an indicator function (if a rare event problem) or a likelihood (if a Bayesian problem).
- If  $f(\mathbf{x})$  accounts for a rare event problem, each threshold  $\gamma_j$  is defined as the  $\rho$ -quantile of the sequence of values  $\{f_i = f(\mathbf{X}_i)\}_{i=1}^n$ . The value  $\rho$  is chosen to ensure that a good portion of the samples from  $\pi_{\text{bias}}(\cdot; \theta_j)$  fall in the next set set, usually  $\rho \in [0.01, 0.1]$ .

## Importance sampling: cross-entropy method example (see Project)

- Consider one of the target applications, where  $f(\mathbf{U})$  is the forward model solution at location  $L/2$  and  $\mathbf{U} \in \mathbb{R}^3$  is standard Gaussian.
- We can define a rare event problem of estimating the probability that the model response exceeds a maximum allowed threshold, i.e.,  $\mathbb{P}[\tau \leq f(\mathbf{x})]$ . The thresholds are  $\tau = \{50, 10, 1.5, 2\}$  for Poisson, Heat, Abel and Deconvolution problems, respectively.
- Assuming the biasing density belongs to a family of Gaussian distributions. Employ the CE method to find  $\mathbb{P}[\tau \leq f(\mathbf{x})]$ .
- Continue on code...



## Variance reduction: final comments

- Variance reduction is an ongoing field of research in UQ, for both forward and inverse problems.
- Many of the methods exposed here can be extended to the case of inverse problems within the Bayesian framework.
- We will see that practical UQ for inverse problems requires a solid foundation on stochastic simulation (i.e., the methods discussed in the past lectures).

## References

- [1] H. Kahn et al. "Methods of reducing sample size in Monte Carlo computations". In: *Journal of the Operations Research Society of America* 1.5 (1953), pp. 263–278.
- [2] A. B. Owen. *Monte Carlo theory, methods and examples*. [artowen.su.domains/mc/](http://artowen.su.domains/mc/), 2018.
- [3] R. Y. Rubinstein. "Optimization of computer simulation models with rare events". In: *European Journal of Operational Research* 99.1 (1997), pp. 89–112.

---

Disclaimer: all figures are either generated by the Author or under Creative Commons licenses