
Random fields and their discretizations

Felipe Uribe

Computational Engineering
School of Engineering Sciences
Lappeenranta-Lahti University of Technology (LUT)

Special Course on Inverse Problems
Lappeenranta, FI — January-February, 2024



Why random fields?

• Spatial variation is a common characteristic of uncer-
tain phenomena occurring in several areas of science.

• Therefore, computational models are controlled by
parameters that are functions on a given spatial do-
main.

• The patterns of uncertain quantities induced by spa-
tial variation are complex and one requires a prob-
abilistic description for their analysis and interpreta-
tion.

• The theory of stochastic processes provides a tool for
studying random phenomena that vary in time. This
theory can be generalized to deal with models that
vary randomly in space, so-called random fields. Figure: Changes in the sea level.
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PART I: definition of a random field
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Random fields: intro I

• Random fields can be roughly understood as an arranged set of random variables.

• The arrangement is specified by the index set pointing to different spatial locations of some
topological space, which by definition is infinite-dimensional.

• In practice, one seeks a suitable finite-dimensional representation of the random field. Most
of the available techniques for random field discretization require not only the specification
of a set of spatial points, but also information provided by the expectation and covariance.

• Some important people.
Bertil Matérn (1917-2007), Michael L. Stein, Håvard Rue, ...

F. Uribe | LUT University SCIP | 3



Random fields: intro I
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• The arrangement is specified by the index set pointing to different spatial locations of some
topological space, which by definition is infinite-dimensional.

• In practice, one seeks a suitable finite-dimensional representation of the random field. Most
of the available techniques for random field discretization require not only the specification
of a set of spatial points, but also information provided by the expectation and covariance.

• Some people in the field.
▶ Bertil Matérn (1917-2007)1, Robert J. Adler (1950-)2 Michael L. Stein3, Håvard Rue4, ...

1 B. Matérn. Spatial variation: stochastic models and their application to some problems in forest surveys and other sampling
investigations. Report No. 49/5. Forest Research Institute of Sweden, 1960.

2
R. J. Adler. The geometry of random fields. Society for Industrial and Applied Mathematics (SIAM), 2010.

3
M. L. Stein. Interpolation of spatial data: some theory for kriging. Springer, 1999.

4
H. Rue and L. Held. Gaussian Markov Random Fields. Theory and Applications. Chapman & Hall/CRC, 2005.

F. Uribe | LUT University SCIP | 3



Random fields: intro II
• Consider the probability space (Ω, F ,P), together with a bounded index set D ⊆ Rn repre-

senting a physical domain.

• Let us define G(n,d) := {g : Rn → Rd; d, n ≥ 1} to be the set of functions mapping from
D to Rd.

• We can also define the σ-algebra induced by that mapping,

G(n,d) := {g ∈ G(n,d) : g(xj) ∈ Bj}, xj ∈ D, j = 1, . . . , k,

where Bj = Bj(Rd) are Borel sets (half-open intervals) on Rd and k is an arbitrary integer.
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• Let us define G(n,d) := {g : Rn → Rd; d, n ≥ 1} to be the set of functions mapping from
D to Rd.

• We can also define the σ-algebra induced by that mapping,

G(n,d) := {g ∈ G(n,d) : g(xj) ∈ Bj}, xj ∈ D, j = 1, . . . , k,

where Bj = Bj(Rd) are Borel sets (half-open intervals) on Rd and k is an arbitrary integer.

Random field

A (n, d)-dimensional random field is a measurable transformation H(x, ω) from the
space (Ω, F) into the realization space (G(n,d), G(n,d)).
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Random fields: intro III

• From this definition, a random field can be simply understood as a random variable that
takes values in a function space. That is: A random field H(x, ω) on D ⊆ Rn is a function
whose values are random variables for any x ∈ D ⊆ Rn.

• Random fields are usually denoted by H(x, ω), meaning the value that a function in G(n,d)

takes at the location x for a given ω ∈ Ω.

• For fixed ωi, the Rd-valued function hi(x) = H(x, ωi) is a realization or sample path of the
random field. Conversely, for a fixed xj ∈ D, the function Hj(ω) = H(xj , ω) is a RV.

• It is useful to think of x as “spatial coordinate” and of each ω as a “particle” or “experiment”.
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(1, d)-dimensional random field

Figure: For a fixed element of the sample space ωi ∈ Ω, the random field turns into a realization hi(x)
across the spatial domain D = [0, 1]. For a fixed spatial coordinate xj ∈ D, the random field turns into
a random variable Hj(ω).

F. Uribe | LUT University SCIP | 6



(2, d)-dimensional random field
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Random fields: fi-di distributions I
• Given a probability measure P on (Ω, F ), one can define a corresponding law or distribution
PH in the realization space (G(n,d), G (n,d)).

• This corresponds to the product measure

PH(B1 × · · · × Bk) = P[H(x1, ω) ∈ B1, . . . , H(xk, ω) ∈ Bk] .

• The associated collection of k CDFs given by

FH1,...,Hk
(y1, . . . , yk) = P[H(x1, ω) ≤ y1, . . . , H(xk, ω) ≤ yk]

= P[H1(ω) ≤ y1, . . . , Hk(ω) ≤ yk] ,

with k ≤ d, is known as the family of finite-dimensional (fi-di) distributions of the random
field H.
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µ in the realization space (G(n,d), G (n,d)).

• This corresponds to the product measure

PH(B1 × · · · × Bk) = P[H(x1, ω) ∈ B1, . . . , H(xk, ω) ∈ Bk] .

• The associated collection of k CDFs given by

FH1,...,Hk
(y1, . . . , yk) = P[H(x1, ω) ≤ y1, . . . , H(xk, ω) ≤ yk] (2a)

= P[H1(ω) ≤ y1, . . . , Hk(ω) ≤ yk] , (2b)

with k ≤ d, is known as the family of finite-dimensional (fi-di) distributions of the random
field H [2].

F. Uribe | LUT University SCIP | 8



Random fields: fi-di distributions II

• Random fields can be directly defined in terms of the family of fi-di distributions provided
they exist and satisfy the consistency and symmetry conditions.

• Kolmogorov’s extension theorem (a random field can be uniquely extended from its fi-di
distributions) [17, p.11]:

(i) Symmetry (permutation invariance): FH1,...,Hk (y1, . . . , yk) is invariant under arbitrary permu-
tation of the indices j = 1, . . . , k (for both xj , yj).

(ii) Consistency (projection invariance): FH1,...,Hk+1 (y1, . . . , yk+1) = FH1,...,Hk (y1, . . . , yk), as
yk+1 → ∞.

• The characterization established by the fi-di distributions is the most used in practice since
it is more intuitive to think of a random field as a collection of random variables representing
uncertain values at each spatial coordinate in D.
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PART II: random field properties: statistics and regularity
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Random fields: statistical properties I

• Consider a second-order random field expressed by the collection of random variables Hx =
{H(x1, ω), . . . , H(xj , ω), . . . , H(xd, ω)} with joint distribution FHx and density πHx .

The expectation or mean of a random field is the Rd-valued function

µH(x) = E[H(x, ω)] =
∫
Rn

y dFHx(y) =
∫
Rn

y πHx(y) dy. (3)

The second moment or correlation of the random field H(x, ω) with itself H(x′, ω) (i.e.,
the autocorrelation) is given by the Rd×d-valued function

RHH(x,x′) = E[H(x, ω)H(x′, ω)] =
∫
Rn

∫
Rn

y y′ πHx,Hx′ (y,y′) dy dy′. (4)
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Random fields: statistical properties II

• Similarly, the covariance of the random field H(x, ω) with itself H(x′, ω) is the Rd×d-valued
function

CHH(x,x′) = Cov [H(x, ω), H(x′, ω)] = E[H(x, ω)H(x′, ω)] − µH(x)µH(x′) (5a)
= RHH(x,x′) − µH(x)µH(x′). (5b)

• Moreover, the normalized covariance function

ρHH(x,x′) = CHH(x,x′)
σH(x)σH(x′) , (6)

is called the correlation coefficient function, where σH(x) corresponds to the standard devi-
ation of the field.
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Random fields: statistical properties III
• A random field is strictly homogeneous or just homogeneous, if the distribution functions are

invariant under arbitrary translations in space. That is, for all spatial coordinates x′ ∈ D

P[H(x1, ω) ≤ y1, . . . , H(xk, ω) ≤ yk] = P[H(x1 + x′, ω) ≤ y1, . . . , H(xk + x′, ω) ≤ yk] ,
(7)

where each (xj + x′) ∈ D (with j = 1, . . . , k and k ≤ d).

• The random field is weakly homogeneous, if the mean function is constant across D and the
correlation function only depends on the separation vector h = x − x′, that is

µH(x) = µH < ∞ and RHH(x,x′) = RHH(h) = RHH(−h). (8)

• Under 8, the covariance function eq. (5) reduces to CHH(h) = σ2
HρHH(h), since the

variance of a homogeneous field is also constant, σ2
H(x) = σ2

H < ∞.
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Random fields: statistical properties IV

• Furthermore, if the homogeneous correlation/covariance function is also independent of the
direction (rotations and reflections), the random field is called isotropic.

• In this case, the covariance is only a function of the norm on D. Since in most cases D ⊂ Rn,
we employ the Euclidean norm ∥h∥2 = h and we write CHH(h) = CHH(h).

One can also use a different norm to compute the distances between the spatial coordinates.
This provides more flexibility in the application of homogeneous covariance functions.

The dependence structure of physical phenomena is oftentimes spatially varying. This re-
quires the application of non-homogeneous random fields, which in some cases can be derived
from homogeneous ones.
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Random fields: regularity I

• It is important that the realizations of a random field satisfy some regularity properties.

• The most fundamental regularity condition one requires in practice is continuous differentia-
bility, which is directly related to the smoothness of the field.

For example, Gaussian random fields are considered regular, if they have sample function
continuity and differentiability.

Continuity of random fields is associated to the convergence of sequences of random variables
{H(x1, ω), . . . , H(xd, ω)} as d → ∞.
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Random fields: regularity II

• A random field is mean-squared continuous in D, if

E
[
(H(xk, ω) − H(x, ω))2

]
→ 0 as k → ∞, ∀ x ∈ D. (9)

• Mean-squared continuity does not imply continuous sample paths. However, the condition
in eq. (9) has an important relation with the covariance function:

If CHH(x,x′) is continuous at every diagonal point x = x′, then the random field is
continuous every-where, i.e., continuous variance [1]. Particularly, for homogeneous random
fields the continuity holds, if CHH(h) is continuous at h = 0.
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PART III: Gaussian random fields and covariance kernels
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Gaussian random fields

• A Gaussian random field H(x, ω) is a random field whose fi-di distributions are all multivari-
ate Gaussian. In this case, the field is determined by the mean and covariance functions.

• Gaussian fields are fundamental in the study of spatial variation, not only because they are
reasonable models in some applications, but also (and mainly) because they have a simple
construction that enables analytical tractability.

• If we define the partition X = [X1,X2], such that X1 = [X1, . . . , Xk] and X2 =
[Xk+1, . . . , Xd], the mean vector and covariance matrix can be divided in terms of indi-
vidual and crossed components associated to each grouping

µX =
[

µ1
µ2

]
ΣXX =

[
Σ11 Σ12
ΣT

21 Σ22

]
, (10)
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Gaussian random fields

• The fi-di distributions induced by the Gaussian assumption satisfy the conditions of consis-
tency and symmetry (see, e.g., [1, Sec. 1.4]).

• Thus, the main task for the definition of Gaussian random fields is the specification of a
proper correlation/covariance function. This is because the sample path continuity of a
Gaussian field is basically controlled by this function.

Since almost every continuous correlation function with an exponential decay complies with
this condition, states that “Gaussian random fields with continuous mean and covariance
functions will generate continuous sample paths”.

Non-Gaussian random fields can be generated from Gaussian ones. The process usually
involves the application of nonlinear mappings that preserve probability in both underlying
spaces, so-called isoprobabilistic transformations.
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Covariance operators and kernels I

• Covariance kernels for random field modeling are models used to define the particular spatial
correlation of a random field.

• Three essential properties of covariance functions that follow from its definition are:
(i) symmetry, CHH(x,x′) = CHH(x′,x);
(ii) positive definiteness, i.e.,

d∑
i=1

d∑
j=1

cicjCHH(xi,xj) ≥ 0,

for each {x1, . . . ,xd} ∈ D and c1, . . . , cd ∈ R;
(iii) continuity.

F. Uribe | LUT University SCIP | 20



Covariance operators and kernels II
• In general, covariance functions are understood as kernels. Consider D ⊂ Rn be a bounded

domain. A function k : D × D → R is called a Hilbert–Schmidt kernel if∫
D

∫
D

|k(x, y)|2 dxdy < ∞; (11)

the associated integral operator K : L2(D) → L2(D), defined as

(Ku)(x) =
∫

D

k(x, y)u(y)dy ∀ u ∈ L2(D) (12)

is called a Hilbert–Schmidt operator.

Here, K is understood as a linear operator in an infinite-dimensional setting. In practice,
a spatial discretization is imposed on D to define a finite representation of such operator,
this process generates a so-called Gram matrix. In the context of covariance kernels, the
resulting finite-dimensional operator is the covariance matrix.
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Covariance operators and kernels II

Reproducing Kernel Hilbert Space

Let H be a Hilbert space of real functions f defined on an index set D. Then H
is called a reproducing kernel Hilbert space (RKHS) endowed with an inner product
⟨·, ·⟩H (and norm ∥f∥2

H = ⟨f, f⟩H), if there exist a kernel k with the properties:
• for every x, k(x,x′) as a function of x′ belongs to H, and
• k has the reproducing property, ⟨f(·), k(·,x′)⟩H = f(x′).

• For every positive definite function k(·, ·) there exists a unique RKHS, and vice versa.

• Different parametric families of covariance functions are available in the literature, these
include the Cauchy, Bessel and exponential families (several examples are reported in [1, 5]).
A well-known family in spatial statistics is the Matérn class.
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Covariance operators and kernels: some examples in 1D

• Triangular kernel:

k(x, x′) = σ2
H(1 − ℓ |x − x′|) with |x − x′| ∈

[
0,

1
ℓ

]
, (15)

where ℓ is a parameter to adjust the distance of zero correlation.

• Wiener kernel:
k(x, x′) = σ2

H min (x, x′) . (16)

• Brownian bridge kernel:
k(x, x′) = σ2

H(min (x, x′) − xx′). (17)
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Covariance operators and kernels: Matérn I
• The original Matérn kernel is [10, p.18]

Cν(h) = σ2
H

2
Γ(ν)

(
bh

2

)ν

Kν (bh) , (18)

where h = ∥x − x′∥2, Γ(·) is the gamma function, Kν(·) is the modified Bessel function of
the second kind, and the constants b, ν > 0.

• A similar model was proposed in [16]:

Cν(h) = σ2
H

1
Γ(ν + 1)

(
h

2b

)ν

Kν (bh) . (19)

• Due to the similarities between eq. (18) and eq. (19), the kernels are sometimes grouped
together as the Whittle–Matérn class.
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Covariance operators and kernels: Matérn II

• However, [6] introduced the standard Matérn family formulation which re-parameterizes
eq. (18) in terms of a scale parameter ℓ ∈ R>0 controlling the range of correlation (correlation
length) and a smoothing parameter ν ∈ R>0 controlling the smoothness of the random field.
In this case, the Matérn kernel is expressed as

Cν(h) = σ2
H

21−ν

Γ(ν) (bh)ν
Kν (bh) (20)

where b = (
√

2νh)/ℓ.

• A slightly different version of eq. (20) is proposed in [7], where b = (2
√

νh)/ℓ is used.

• In general, there exist several parametrizations of the Matérn kernel each of which have
particular advantages in different fields (see for instance [15, p.31],[4]).
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Covariance operators and kernels: Matérn III

• We employ the following type of Matérn covariance kernel [13]

Cν(h) = σ2
H

21−ν

Γ(ν)

(√
2νh

ℓ

)ν

Kν

(√
2νh

ℓ

)
, (21)

since we can define the special case ν = 1/2 and limiting case ν → ∞:

C1/2(h) = σ2
H exp

(
−h

ℓ

)
and C∞(h) = σ2

H exp
(

− h2

2ℓ2

)
, (22)

which correspond to the non-differentiable exponential and infinite-differentiable squared
exponential (sometimes called Gaussian or radial basis function) covariance kernels, respec-
tively.
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Covariance kernels in 2D
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Figure: Examples of kernels: triangular (top left), Wiener (top right), exponential (bottom left),
Gaussian (bottom right). Here, σ2

H = 1.
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Matérn covariance kernel in 2D
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Figure: Correlation matrix associated to the Matérn kernel for different smoothing parameters (cols)
and small ℓ = 0.25 (D = [0, 5]).
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Matérn covariance kernel in 2D
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Matérn covariance kernel in 2D
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and large ℓ = 10 (D = [0, 5]).
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PART IV: Random field representations
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Random field discretization

Methods for random field representation can be classified into three main categories:

(i) Point discretization methods, in which the random field is represented point-wise at each
spatial location of the discretization; the standard algorithm is the midpoint method.

(ii) Averaging discretization methods, in which the random field is expressed as weighted integrals
over the domain. Some approaches are, the spatial averaging method, the shape function
method and the weighted integral method.

(iii) Series expansion methods, where the random field is represented as a truncated series expan-
sion of random variables and deterministic functions. Popular techniques are the Karhunen–
Loève expansion, spectral representation, and Bayesian neural networks.
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Random field discretization

2 Reliability analysis with spatially distributed measurements
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a) Point-wise error variance with d = 4 b) Point-wise error variance with d = 10

c) Random RF realization with d = 4 d) Random RF realization  with d = 10

Figure 2.9: Point-wise error variance and random realization for the discretization of a one-dimensional,
homogeneous, zero-mean and unit-variance Gaussian RF with the Matérn correlation model
(‹ = 2.5, Lc = 0.5) with MP method, SA method and KL expansion in the domain z œ � =
[0, 10]. Panels a and b show the point-wise error variance with d = 4 (panel a) and d = 10
(panel b) RVs using MP method (red), SA method (green) and KL expansion (blue). Panels
c and d illustrate the realization of the RF discretized with MP method (red), SA method
(green) and KL expansion (blue) with d = 4 (panel c) and d = 10 (panel d) RVs. The dashed
black lines in panel c and d illustrate the corresponding reference realization of the RF.

F = g (r, s) Æ 0. (2.90)

If the demand equals or exceeds the structural resistance, g (r, s) gives a non-positive value,
indicating system failure. The uncertain input parameters R and S need to be modeled as
random variables. Following Equation (2.89), PF is defined as follows:

PF = P (R ≠ S Æ 0) . (2.91)

2.2.1.1 Implicit reliability analysis

Solution of Equation (2.91) can be achieved through di�erent strategies. In most cases, it is
not required to explicitly calculate PF , as structural design codes provide an e�cient means to
ensure an acceptable level of reliability by following a standardized verification concept.

The simplest way to define a safety criterion is achieved by the following equation [109]:

Snom Æ
Rnom
“glob

, (2.92)

where “glob Ø 1 denotes a global safety factor which can be found empirically, e.g., based on
experimental observations or practical experience. Snom and Rnom are the nominal values of
the demand and resistance, respectively. Although the uncertainty in R and S plays a role
for the choice of “glob, it is not explicitly accounted for. Given “glob, the design criterion of
Equation (2.92) is fully deterministic. The principle of the global safety concept is illustrated in

26

sub
lead/ sub equations}

m

•a

Figure: Comparison of random field representation methods: midpoint, spatial averaging, and
Karhunen–Loève expansion. For d = {4, 10} discretization points (left and right). The dotted black line
shows a “full” (d → ∞) random field realization as a reference.
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Point discretization I

• The random field is represented at specific points x ∈ D. A common choice is to pick those
points as centroids of the elements defining the discretization of the domain D.

• We set a finite partition of the domain D into domain elements D(e). The approximation is
expressed as a single RV defined at the centroid x(c) ∈ D(e) of each element, i.e.,

H̃(x) = H(x(c)). (23)

This method is the simplest of all random field discretizations but it easily suffers from the
curse of dimensionality as the dimension depends on the resolution of the domain discretiza-
tion, which can be large in many applications.

This method tends to over-represent the variability (uncertainty) of the random field.
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Point discretization II

Figure: The midpoint method represents the random field as a collection of random variables indexed at
the centroids of the domain discretization. Here, the “true” realization in blue is represented by the
realization in red.
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Karhunen–Loève discretization: intro

• The Karhunen–Loève (KL) expansion [9, 8] uses a linear combination of orthonormal func-
tions chosen as the eigenfunctions resulting from the spectral decomposition of the covariance
operator of the random field.

• The KL expansion is based on Mercer’s theorem [11], which provides a series representation
of symmetric positive-definite functions.

• The expansion is also known as Hotelling transform and it is closely related to principal
component analysis (PCA) technique widely used in image processing and in data analysis
in many fields.
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Karhunen–Loève discretization: Mercer’s theorem

• Let D ⊆ Rn. We have seen that given a continuous kernel k, we can define a Hilbert–
Schmidt operator. This operator is compact and has a complete set of eigenvectors in
L2(D).

• In this case, there exists an orthonormal basis consisting of eigenfunctions {ϕi} : D → L2(D)
of the operator together with a sequence of eigenvalues {λi} ∈ [0, ∞), such that λk ≥ λk+1
and limk→∞ λk = 0.

The covariance kernel CHH(x,x′) has a representation of the form

CHH(x,x′) =
∞∑

i=1
λiϕi(x)ϕi(x′), ∀ x,x′ ∈ D; (26)

this is called a Mercer expansion (only for symmetric positive-definite functions).
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Karhunen–Loève discretization: definition
• Consider a square-integrable (second-order) random field H(x, ω) defined over a probabil-

ity space (Ω, F ,P), indexed over D, and equipped with a continuous covariance function
CHH(x,x′).

We can employ an orthonormal basis consisting of the eigenfunctions of the covariance
operator together with the sequence of real and positive eigenvalues to represent H(x, ω):

H(x, ω) ≈ Ĥ(k,x, ω) := µH(x) +
∞∑

i=1
1(i ≤ k)

√
λiϕi(x)θi(ω), (27)

where 1(·) denotes the indicator function, k is the truncation order of the expansion, and
θ = {θi(ω) : Ω → R} is a set of mutually uncorrelated random variables with mean zero
and unit variance.

The series in 27 is called the Karhunen–Loève expansion of the random field.

F. Uribe | LUT University SCIP | 39



Karhunen–Loève discretization: definition
• Consider a square-integrable (second-order) random field H(x, ω) defined over a probabil-

ity space (Ω, F ,P), indexed over D, and equipped with a continuous covariance function
CHH(x,x′).

• We can employ an orthonormal basis consisting of the eigenfunctions of the covariance
operator together with the sequence of real and positive eigenvalues to represent H(x, ω):
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Karhunen–Loève: comments

• Note that the KL expansion works as a dimension reduction technique: instead of directly
using a countable set of spatial points (as d → ∞), we are now defining the uncertainty in
terms of the KL coefficients θ ⊆ Rk, with k ≪ d.

For Gaussian random fields, the variables θi(ω) are iid Gaussian. In general, the distribution
of θi(ω) is cumbersome to estimate since

θi(ω) = 1√
λi

∫
D

H(x, ω)ϕi(x)dx i = 1, 2, . . . , (26)

which requires the knowledge of random field structure for its computation.

Non-Gaussian random fields can be represented with the KL expansion through the definition
of different basis functions, or the application of a suitable isoprobabilistic transformation.

F. Uribe | LUT University SCIP | 41



Karhunen–Loève: comments

• Note that the KL expansion works as a dimension reduction technique: instead of directly
using a countable set of spatial points (as d → ∞), we are now defining the uncertainty in
terms of the KL coefficients θ ⊆ Rk, with k ≪ d.

• For Gaussian random fields, the variables θi(ω) are iid Gaussian. In general, the distribution
of θi(ω) is cumbersome to estimate since

θi(ω) = 1√
λi

∫
D

H(x, ω)ϕi(x)dx i = 1, 2, . . . , (27)

which requires the knowledge of random field structure for its computation.

• Non-Gaussian random fields can be represented with the KL expansion through the definition
of different basis functions, or the application of a suitable isoprobabilistic transformation.

F. Uribe | LUT University SCIP | 41



Karhunen–Loève: properties
The KL expansion is usually preferred over other alternatives due to the following properties:

1. Error minimizing property: the KL approximation minimizes the mean-squared error
(MSE)

E

[∥∥∥[H(x, ω) − µH(x)] − [Ĥ(x; k,θ) − µH(x)]
∥∥∥2

2

]
=

∞∑
i=k+1

λ2
i . (28)

2. Uniqueness of the expansion: the random variables θ = {θi(ω) : Ω → R} in the
expansion are orthonormal, if and only if the orthonormal functions {ϕi} and the constants
{λi} are the eigenpairs of the covariance matrix of the field.

Moreover, we can compute the variance of the KL approximation as

V
[
Ĥ(x; k,θ)

]
=

k∑
i=1

λiϕ
2
i (x). (29)
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Karhunen–Loève: error metrics I

• In the KL expansion, the number of terms to be included in the series is closely related to
the magnitudes of the eigenvalues, which in turn strongly depend on the correlation length
and smoothness of the covariance function.

• One can define local point-wise errors for the mean and variance in terms of the relative
difference between the exact and approximated random fields:

ϵµ(x) =

∣∣∣∣∣∣
E[H(x, ω)] − E

[
Ĥ(x; k,θ)

]
E[H(x, ω)]

∣∣∣∣∣∣ ϵσ2(x) =

∣∣∣∣∣∣
V[H(x, ω)] −V

[
Ĥ(x; k,θ)

]
V[H(x, ω)]

∣∣∣∣∣∣ ,
here ϵµ and ϵσ2 are the relative errors in the mean and variance, respectively.
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Karhunen–Loève: error metrics II
• Global error metrics can also be applied to quantify the overall quality of the random field

representation. These are defined for the mean and variance, as their average values over
the index set D of the random field

ϵ̄µ = 1
|D|

∫
D

ϵµ(x)dx and ϵσ2 = 1
|D|

∫
D

ϵσ2(x)dx, (30)

where |D| =
∫

D
dx.

• Under eq. (29), the global variance error reduces to

ϵ̄σ2 = 1 − 1
|D| σ2

H

k∑
i=1

λi; (31)

this expression is commonly used to define the truncation order of the KL expansion.

F. Uribe | LUT University SCIP | 44



Karhunen–Loève: finding the eigenpairs

• The set of eigenpairs {λi, ϕi} are obtained through the solution of an homogeneous Fredholm
integral equation of the second kind [5]∫

D

CHH(x,x′)ϕi(x′)dx′ = λiϕi(x), (32)

whose analytical solution exist only for specific cases of covariance functions.

Several methodologies have been proposed to solve the eigenvalue problem:
Projection methods, which aim to minimize an error (e.g., collocation, Galerkin).
Nyström methods, which replace the integral with a representative weighted sum.
Degenerate kernel methods, which consist of approximating a target kernel k(x, y) with a
degenerate or separable kernel kn(x, y) =

∑n

i=1 ai(x)bi(y).
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Karhunen–Loève: two analytical solutions
• If the correlation kernel is Wiener (eq. (16)), the eigenvalues and eigenfunctions are given

by:
ϕk(x) =

√
2 sin

((
k − 1

2
)

πx
)

, λk = 1
(k − 1

2 )2π2 . (33)

• If the correlation kernel is exponential (eq. (22)), the eigenvalues and eigenfunctions are
given by:

ϕk(x) =



cos(ωkx)(
a + sin(2ωka)

2ωk

)1/2
k odd

sin(ωkx)(
a − sin(2ωka)

2ωk

)1/2
k even

, λk = 2
ℓ(ω2

k + 1/ℓ2) , (34)

where the ωk are found from nonlinear equations for k odd and even, respectively [5].
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Karhunen–Loève: Nyström method I

• The Nyström method requires the application of some quadrature rule to solve integral
equations as, ∫ b

a

g(x) dx ≈
NGP∑
j=1

wj g(ξj), (35)

where {wj}NGP
j=1 are the weights of quadrature rule, and the points {ξj}NGP

j=1 are the associated
abscissas of the quadrature polynomial. Gauss–Legendre quadrature rules are the most
popular.

• After applying this formulation to (32), the following is obtained:

NGP∑
j=1

wjCHH(ξi, ξj)ϕk(ξj) = λkϕk(ξi), i = 1, . . . , NGP. (36)
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Karhunen–Loève: Nyström method II
• The above can be expressed in the form of a matrix eigenvalue problem as,

C̃f = Λf (37)

where, C̃ is a NGP × NGP matrix, with its components defined as, C̃ij = CHH(ξi, ξj) wj .

• For computational reasons, it is desirable that the eigenvalue problem involves symmetric
matrices. The covariance kernel is symmetric, but due to the fact that the integration weights
wj are not equal in most quadratures, the symmetry of the matrix C̃ can be affected.

• The symmetry condition can be restored by considering the diagonal matrix W = diag(w),
and its square root W1/2 = diag(

√
w), such that:

CWf = Λf (38a)
(W1/2CW1/2)h = Λh, (38b)

where h = W1/2f . This is now in the form of a symmetric eigenvalue problem.
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Karhunen–Loève: Nyström method III

• The symmetric eigenvalue problem in (38b) is solved for h, with components hij = √
wjfij ,

and the diagonal matrix Λ with the eigenvalues as its elements Λij = δijλi.

• After that, the i-th eigenvector is obtained as the i-th column of f = W−1/2h.

• Finally, the eigenfunctions can be obtained by the so-called Nyström interpolation formula:

ϕk(x) = 1
λn

NGP∑
j=1

wjfjnCHH(x, ξj) ∀ x ∈ D, n = 1, . . . , NGP. (39)
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Karhunen–Loève: example 1D
• We model the flexibility F (x) of a cantilever beam. The beam has length L = 5 m (i.e.,

D = [0, 5]).

• The flexibility is described by a homogeneous Gaussian random field. The Matérn class is
considered as covariance function. The mean of the field is µF = 1×10−4 and the standard
deviation is σF = 0.35 · µF .

• A parameter study on the correlation length ℓ and smoothing ν is performed.

Figure: Cantilever beam configuration.
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Karhunen–Loève: example 1D; variance error
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Figure: Evolution of the global variance error with the KL terms dKL = k. For different number of GL
points in the Nyström method (NGP = {50, 100, 250, 500, 1000}); shown with dashed lines and
increasing blue color. For different smoothing parameters (cols) and small ℓ = 0.25. The reference
global variance error is shown in red.
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Karhunen–Loève: example 1D; variance error
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Figure: Evolution of the global variance error with the KL terms dKL = k. For different number of GL
points in the Nyström method (NGP = {50, 100, 250, 500, 1000}); shown with dashed lines and
increasing blue color. For different smoothing parameters (cols) and large ℓ = 10. The reference global
variance error is shown in red.
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Karhunen–Loève: example 1D; realizations
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Figure: Flexibility random field realizations for different smoothing parameters of the Matérn kernel and
small ℓ = 0.25.
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Karhunen–Loève: example 1D; realizations
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Figure: Flexibility random field realizations for different smoothing parameters of the Matérn kernel and
large ℓ = 10.
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Karhunen–Loève: example 2D
• We consider a steel plate defined by a square domain D ⊆ R2 with length 0.32, thickness

t = 0.01, and a hole of radius 0.02 located at its center.

• The Young’s modulus E(x) is assumed to be random and spatially variable. A lognormal
random field with mean µE = 2 × 105 and standard deviation σE = 3 × 104 is used.
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Karhunen–Loève: example 2D

• The truncated KL expansion of the Young’s modulus can be written as

Ê(x,θ) := exp
[

µE′ +
k∑

i=1

√
λiϕi(x)θi

]
, (40)

where the underlying Gaussian parameters µE′ = 26.011 and σE′ = 0.149, are computed
from the mean and standard deviation of the lognormal random field.

• We select the Matérn kernel to model the covariance function of the underlying Gaussian
field. The smoothing parameters are chosen as ν = {0.5, 2, ∞} and we select the correlation
lengths as ℓ = {0.02, 0.16, 0.32} m.

• The eigenpairs are estimated with the Nyström method using 110 GL points in each direction.
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Karhunen–Loève: example 2D; eigenvalues
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Figure: Evolution of the eigenvalues of the Matérn covariance operator with the truncation order of the
KL expansion, for different smoothing parameters and correlation lengths.
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Karhunen–Loève: example 2D; eigenfunctions for ν = 0.5 and ℓ = 2
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Neural networks

• Neural networks (NNs) are commonly used in practice as function approximators.

• This is primarily attributed to their flexibility of having many model parameters (weights and
biases) which can be learned from data.

• In statistical terms, NNs are non-parametric models, a term meant to contrast them with
parametric models in which the relationship is characterized in terms of a few parameters,
which often have meaningful interpretations.

• Bayesian neural network (BNNs) combines neural network with Bayesian inference. Bayesian
inference allows us to learn a probability distribution over possible neural networks5.

5
R. M. Neal. Bayesian Learning for Neural Networks. Springer, 1996.

F. Uribe | LUT University SCIP | 59



Feed-forward network functions (I)
• Feed-forward network functions are also known as multilayer perceptron networks. These

networks take in a set of real inputs, xi, and from them compute one or more output values,
uj(x), using some number of layers of hidden units.

• NNs use a ‘basis function’ that is itself a nonlinear function of a linear combination of
the inputs, where the coefficients in the linear combination are adaptive parameters [3].

• This leads to the basic NN model, which can be described a series of functional transforma-
tions. The unknown function can be represented by a K-layer NN on D:

u(x) ≈ Ψ(NN)(x;θ) := f

(
K∑

i=1
θiΦi(x)

)
, (41)

where f is a nonlinear activation function, Φi are nonlinear basis functions, and the coeffi-
cients θ. These are adjusted during the estimation.
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Feed-forward network functions (II)
• We consider a fully-connected feed-forward network function composed of L ≥ 1 layers

where each layer has nℓ nodes. If x ∈ R is a scalar input argument, we can explicitly define
the network as:

f
(1)
i (x) = w

(1)
i,1 x + b

(1)
i , h

(1)
i (x) = φ

(
f

(1)
i (x)

)
1 ≤ i ≤ n1 (42a)

f
(ℓ)
i (x) = 1

√
nℓ−1

nℓ−1∑
j=1

w
(ℓ)
i,j h

(ℓ−1)
j (x) + b

(ℓ)
i , 2 ≤ ℓ ≤ L, 1 ≤ i ≤ nℓ, (42b)

where b
(ℓ)
i and w

(ℓ)
i,j are the biases and weights at the ℓ-th layer.

• For every input x, the NN defines the function representation:

u(x) ≈ Ψ(NN)(x;θ) := 1
√

nL

nL∑
j=1

w
(L+1)
1,j h

(L)
j (x) + b(L+1). (43)
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Feed-forward network functions (III)

• In matrix form we can just simply define the operations as follows:

f (1)(x) = W (1) x + b(1) (44a)

f (ℓ)(x) = 1
√

nℓ−1
W (ℓ) φ

(
f (ℓ−1)(x)

)
+ b(ℓ), 2 ≤ ℓ ≤ L, (44b)

where W (ℓ) and b(ℓ) are weight matrices and biases vectors.

• The scaling factor highlighted in red is necessary to have a well-defined limit of the prior
BNN. This scaling assumes that the weights and biases are endowed with a Gaussian prior.

• We use an hyperbolic tangent activation function (it is important that it is a bounded
function): φ(t) = tanh(t). At the output, the activation is typically linear.
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Feed-forward network functions (IV)

Figure: Classical structure of the (fully-connected) feed-forward network function with 2 layers.
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Feed-forward network functions (V)

• In the network forward map u(x) = Ψ(x;θ), the parameter vector θ ∈ Rd contains all the
weights and biases of the NN.

• The gradient of the NN wrt the parameters θ = {W , b} is computed via the back-
propagation algorithm. This is typically needed to perform the training in the context
of LPs, or to use advanced MCMC algorithms in the context of IPs.

• Back-propagation is an efficient application of the chain rule to NNs. It is also known as the
reverse mode of automatic differentiation. In our example, we have to compute something
like this:

∂u(x;θ)
∂θ

=
[

∂u(x;θ)
∂W (3) ,

∂u(x;θ)
∂W (2) ,

∂u(x;θ)
∂W (1) ,

∂u(x;θ)
∂b(3) ,

∂u(x;θ)
∂b(2) ,

∂u(x;θ)
∂b(1)

]
. (45)
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Gaussian BNNs: the single-layer infinite-dimensional limit (I)
• We assume that (under the prior) the weights and biases in the network are independent

and identically distributed according to a zero-mean Gaussian. That is:

at the input: wi,j ∼ N (0, σ2
w), bj ∼ N (0, σ2

b ) (46a)
at the output: w̄j,k ∼ N (0, σ̄2

w), b̄k ∼ N (0, σ̄2
b ) (46b)

• The output of the NN is the sum of a bias and the weighted contributions of the nℓ hidden
units:

uk(x) = b̄k +
nℓ∑

j=1
w̄j,khj(x), hj(x) = φ

(
bj +

n∑
i=1

w̄i,jxj

)
(47)

• Let us analyze the expectation of the output:

E
[
b̄k + w̄j,khj(x)

]
=�

���*0
E
[
b̄k

]
+����:0
E[w̄j,k] E[hj(x)] = 0. (48)
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Gaussian BNNs: the single-layer infinite-dimensional limit (II)
• Now, let us analyze the variance of the output:

V
[
b̄k + w̄j,khj(x)

]
= V

[
b̄k

]
+V[w̄j,khj(x)] (49a)

= σ̄2
b + E

[
(w̄j,khj(x))2] = σ̄2

b + E
[
w̄2

j,k

]
E
[
hj(x)2] (49b)

= σ̄2
b + σ̄2

w E
[
hj(x)2]︸ ︷︷ ︸

hj has to be bounded.

(49c)

denote V (x) = E
[
hj(x)2].

• By taking into account the sum as nℓ → ∞, we can use the central limit theorem to see
what happens with the output variance:

σ̄2
b +

nℓ∑
j=1

w̄j,khj(x) d→ N (0, σ̄2
b + nℓσ̄

2
w V (x)). (50)
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Gaussian BNNs: the single-layer infinite-dimensional limit (III)
• Accordingly, to obtain a well-defined limit for the prior distribution of the value of the function

at any particular point, we need only scale the prior standard deviation of the hidden-to-
output weights according to the number of hidden units:

1
√

nℓ
σ̄w. (51)

• The joint distribution for the values of all the outputs of the network for some selection
of values for inputs will also become a multivariate Gaussian in the limit as the number of
hidden units goes to infinity.

• Similar result exist for the convergence under more general type of priors, e.g., α-stable
distributions.

• Moreover, infinite-dimensional limit of deep BNNs (i.e., as L → ∞) has also been analyzed.
This might be mentioned later in the course.
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Gaussian BNNs: the single-layer infinite-dimensional limit (IV)
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Figure: Convergence of the BNN prior to a Gaussian process as the nodes increases. Each of the plots is
based on 3000 NN with a two-input and one-output units. In the Gaussian priors we use: in the input
layer σw = σb = 5, and in the output layer σ̄w = 1,σ̄b = 0.1.
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Gaussian BNNs: realizations
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Figure: Realizations u(x) from the Gaussian BNN for different number of layers and nodes.
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Final comments

• The uncertainty related to spatially varying properties is generally represented by random
fields which are understood as random variables that take values in a function space.

• While the KL expansion is simpler to manipulate theoretically, it can only be applied (in
general) to Gaussian random fields, and selecting the covariance kernel type and its hyper-
parameters is necessary.

• Conversely, the NN approximation provides us with more flexibility as we can easily change
the prior of the parameters. However, the parameter space is typically very high-dimensional
and we require the estimation of variance hyperparameters associated with the prior.

• We will see that to perform Bayesian inference, we require MCMC methods that operate in
the function space, or that add gradient information.
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