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Figure: The first part of the course focused on the blue block. Last part of our course will focus on the
Green block.
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Why inverse problems?

e The forward problem (FP) is to compute the output,
given a system and the input to this system.

My anxiety
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elationship
Ith how mygh
he Problem

Matters

Figure: ;)

e The inverse problem (IP) is to compute the input
given the other two quantities (system and output).
In most situations, we have noisy measurements of
the output.

e Inverse problems are some of the most important
mathematical tasks in science and mathematics be-
cause they tell us about parameters that we can-
not directly observe.
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Inverse problems: definition
e Let T € ) be observational data in some separable Banach space — the data space ).

o The data will be used to train a mathematical model, that is identify a (true) model parameter
xf € X. The parameter space X can also be separable Banach space.

e Let G : X — Y be a measurable function called the forward response operator. It
represents the connection between parameter and data in the mathematical model.
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Inverse problems: definition

e Let yT € ) be observational data in some separable Banach space — the data space V.

e The data will be used to train a mathematical model, that is identify a (true) model parameter
xf € X. The parameter space X' can also be separable Banach space.

e Let G: X — Y be a measurable function called the forward response operator. It represents
the connection between parameter and data in the mathematical model.

e Assuming an additive observation error, we define the by (see, e.g., [5])
findz! € X, such that y' = G(aT) + €T, (1)

where, ef € ) is observational noise. We consider ef to be unknown and model it as a
realization of a random variable with measure vgs.
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Inverse problems: well-posedness
e Inverse problems belong to the class of ill-posed problems?.

e Hadamard's definition says that an inverse problem in well-posed if it satisfies the following
three requirements (see, e.g., [2]):
e Existence: The problem must have a solution.
e Uniqueness: There must be only one solution to the problem.
e Stability: The solution must depend continuously on the data. This means that arbitrarily
small perturbations of the data must not produce arbitrarily large perturbations of the solution.

o If the problem violates one or more of these requirements, it is said to be ill-posed.

e The existence condition is in general trivial, the uniqueness condition can often be fixed by
reformulation of the problem, the stability condition is much harder to deal with.

1
The term was coined in the early 20th century by Jacques S. Hadamard.
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Inverse problems: notes

Note that if the noise takes any value in ), the inverse problem is ill-posed [5].

e In practice, the inverse problem estimates an x that approximates the ground truth zt.

e The noise is oftentimes assumed to be Gaussian distributed with mean zero and non-singular
covariance matrix. Other noise assumptions exist in the literature, such as Laplace and
Poisson noises.

e The forward response operator can oftentimes be written as G = O o G, defined as the
composition of the solution operator G with an observation operator O that maps the
forward solution to the data space.
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Discrete inverse problems: classical methods (1)

e In practice, the unknown parameter functions have to be discretized. Hence, the discrete
inverse problem will estimate an unknown model parameter zt € X := R? using noisy
observed data yT €Y :=R™.

o If the forward operator is linear G(x) = Gz and noise is Gaussian (note similarity with
regression), the solution of eq. (1) can be estimated using ordinary least-squares (OLS) as

x! ~ x, = argmin - HG:B - THQ (GTG) Gy (2)
@ER?

e Due to the ill-posedness of eq. (1), OLS might not work in practice, we usually employ
deterministic regularization methods based on spectral filtering, such as: truncated SVD,
Tikhonov, or iterative algorithms (e.g., Landweber, Kaczmarz).
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Discrete inverse problems: classical methods (1)

o A more stable approach uses Tikhonov regularization (also known as ridge regression). The
potential issue of a near-singular matrix GTG is alleviated by adding positive elements,
thereby decreasing its condition number:

1
' ~ x, = argmin = HwayW;Jr = (GTGJrOéL)*lGT L8 (3)
mERd 2

with L = LTL a regularization matrix, with regularization parameter a > 0.

e Regularization can also be achieved using the statistical framework, which also offers a way
to model the potential uncertainty about the parameter .
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Statistical inverse problems ey ———————
WHETHER THE SUN HAS GONE NOVA.
o The statistical techniques that we will be most concerned ( m@%{ﬁﬁ%ﬁé
with are based on frequentist and Bayesian methods, and LETS TRy = )
. . DETECTOR! HAS THE
inferences can be drawn from their use [6]. wmammw i

e Did the sun just explode? It is night so we are not sure LiJEE
(from xked.com/1132/).
e The Sun gone nova is not repeatable, which makes it highly

unsuitable for frequentists which interpret probability as esti- Ry — perpTp———
mate of how frequent an event is, given that we can repeat THE PROGABUIT/ OF T RESLT

. . BY CHANCE 15 5,=0027 BET YOU $50
the experiment many times. 5NcEp<005 T coNbE: T HASNT
mmr—:ammswm )

able for common sense reasoning about one-time events.

e In contrast, Bayesian probability is interpreted as our degree O
of belief giving all available prior knowledge, making it suit- %
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Frequentist inference

e Frequentists do not assign probabilities to the unknown parameters . This means that one
can write likelihoods ke, but not priors or posteriors; « is not a random variable.

e The frequentist paradigm considers y resulting from a random and repeatable experiment.

e In the frequentist viewpoint, there is no single preferred methodology for inverting the rela-
tionship between parameters and data. Instead, consider various estimators Z ~ x1.
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Frequentist inference

e Frequentists do not assign probabilities to the unknown parameters . This means that one
can write likelihoods ke, but not priors or posteriors; « is not a random variable.

e The frequentist paradigm considers y resulting from a random and repeatable experiment.

e In the frequentist viewpoint, there is no single preferred methodology for inverting the rela-
tionship between parameters and data. Instead, consider various estimators Z ~ x'.

e Relies on hypothesis testing, bias, mean-square error, confidence intervals to verify the
estimator .

e Common frequentist approaches include: (i) Maximum likelihood (ii) BLUE (best linear
unbiased estimators), (iii) best asymptotically normal (BAN) estimator, (iv) method of mo-
ments estimator (MME), etc.
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Frequentist inference: maximum likelihood (1)

e The method of maximum likelihood estimation (MLE) is quite a popular technique for
deriving estimators.

e We model a set of observations as a random sample from an unknown joint distribution
with density mike(y | &) which is expressed in terms of a set of parameters x. The goal of
MLE is to determine the parameters « for which the observed data have the highest joint
probability.

F. Uribe | LUT Universit
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Frequentist inference: maximum likelihood (1)

e The method of maximum likelihood estimation (MLE) is quite a popular technique for
deriving estimators.

e We model a set of observations as a random sample from an unknown joint distribution
with density mike(y | &) which is expressed in terms of a set of parameters x. The goal of
MLE is to determine the parameters x for which the observed data have the highest joint
probability.

e Evaluating the joint density at the observed data sample y gives a real-valued function

L(z;y) = Mike(y | &) < exp (—D(w3y)) (4)

which is called the likelihood function, and ® is the negative log-likelihood or potential
function.
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Frequentist inference: maximum likelihood (11)

e The goal is to find the values of the model parameters that maximize the likelihood function
over the parameter space, that is

x' ~ By, = argmax L(x; y);
xR

intuitively, this selects the parameter value that makes the observed data most probable.
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Frequentist inference: maximum likelihood (11)

e The goal is to find the values of the model parameters that maximize the likelihood function
over the parameter space, that is
s

x' = Ty, = argmax L(x;y);

xzeR

intuitively, this selects the parameter values that make the observed data most probable.

e In general, no closed-form solution to the maximization problem is available, and an MLE
can only be found via numerical optimization. In practice, it is often convenient to work
with the potential function.

o As the data size increases to infinity, sequences of MLEs converges in probability to the value
being estimated.
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Frequentist inference: hypothesis testing

o Null-hypothesis significance testing (NHST) is still one of the most dominant approaches to
statistical inference, although heavily criticized.

e With NHST we want to test the estimator against the null-hypothesis (i.e., underlying
causative relationship does not exist). Moreover, the calculated probability of observing the
estimator (or larger), given the null-hypothesis, is called p-value.

e Rather than performing NHST, uncertainty of the estimated parameter can be represented
with the confidence interval (Cl). Example: the 95% Cl contains all the hypotheses param-
eter values that would not be rejected by p < 0.05 NHST. This implies that, in the long-run,
95% Cl will capture the true parameter value 95% of the time.
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Bayesian inference: basic timeline

e Thomas Bayes (1763) - problem of inverse
probability: An Essay towards solving a
problem in the doctrine of chances.

o Pierre-Simon Laplace (1774) - Mémoire sur
la probabilité des causes par les événements.

o Harold Jeffreys (1939) - revival of the “ob-
jective” Bayesian view of probability.

e Edwin T. Jaynes (1957) - maximum en-
tropy, Bayesian/information theory.

e Andrew M. Stuart (2010) - foundations in
infinite dimensions/inverse problems [7].

Figure: Bayes (maybe?) and Laplace.
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Bayesian inference

e Whereas the difficulties related to MLE methods are mainly optimization problems, the
Bayesian approach often results in

o In the Bayesian paradigm, information brought by the data y (a realization of 7k (- | )), is
combined with prior information that is specified in a prior distribution with density mp, ().

e Such information is summarized in a probability density mpos( | y), called the posterior.
This is derived from the joint density mjke(y | €)mpe(x) using Bayes theorem.
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Bayesian inverse problem: measure-theoretic (I)

o First, we model the parameter x ~ v, as a RV. This reflects the uncertainty in the parameter.
Moreover, vy, is the so-called prior measure.

e We assume that = and e are independent RVs defined on an underlying probability space
(Q,F,P). Therefore, y := G(z) + e is also a RV, reflecting the distribution of the data,
given an uncertain parameter. The conditional measure, given a realized value 2/, is

v = Ply € - | 2 = a'] = vons(- — G(")). (5)
o The solution to the Bayesian inverse problem is the posterior measure (given the observed

data y = y7) [9]
Vs =Plze |yl =G(z)+e]. (6)
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Bayesian inverse problem: measure-theoretic (l1)

e Bayes' theorem gives a connection of v, Vpes and v, in terms of their probability densities.
The Radon—Nikodym theorem implies that such densities exist:

v, p e v
Qo (y") = Tike(y' | =) dx (z) = mpe(), (7)

where the dominating measures vx, vy are often given by the counting measure, the
Lebesgue measure, or a Gaussian measure.

F. Uribe | LUT Universit
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Bayesian inverse problem: measure-theoretic (l1)

e Bayes' theorem gives a connection of v4,,, 105 and vy, in terms of their probability densities.
The Radon—Nikodym theorem implies that such densities exist:

duy, dvp:

(2) =: mpe (), (7)

(,(/T) : ﬁ]ik«\(.[/rir ‘ '1‘/)
dry drx

where the dominating measures vx, vy are often given by the counting measure, the
Lebesgue measure, or a Gaussian measure.

e The corresponding Radon—Nikodym derivative of the posterior wrt the prior, presents a
general version of Bayes' formula [7]

dvi 1
pos T T .
(@) = Zmiely' | o) (8)

for example, if z is infinite-dimensional and vy, is Gaussian, we set vx := vy, and mp, = 1.
The posterior measure is then given in terms of a density wrt the Gaussian prior measure.

F. Uribe | LUT Universit
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Bayesian inverse problem: well-posedness

e Stuart [7]? transferred Hadamard's principle of well-posedness to Bayesian inverse problems:
the Bayesian inverse problem is Lipschitz well-posed, if v  exists, vf,  is unique, and

yh — Vg,os is locally Lipschitz continuous (measured by the Hellinger distance).

e To verify stability, the distance between posteriors is typically measured in the Hellinger
distance. However, in practice, it is not possible to show Lipschitz well-posedness for the
Bayesian inversion for black-box models. Further, Hadamard'’s concept contains only conti-
nuity, not Lipschitz continuity.

e Latz [5]3 extended the notion of well-posedness for a general class of probability metrics,
and by considering continuity instead of Lipschitz continuity of the data-to-posterior map.

2
A. M. Stuart. “Inverse problems: a Bayesian perspective”. In: Acta Numerica 19 (2010), pp. 451-559.

3 J. Latz. “On the Well-posedness of Bayesian Inverse Problems”. In: SIAM/ASA Journal on Uncertainty Quantification 8.1
(2020), pp. 451-482.
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Bayesian inverse problem: discrete case

e Let us go back to a less abstract setting. Recall that after discretization the unknown
parameter is modeled as a random vector X taking values € X := R? and the noisy
observed data is yt € Y := R™.

o We define the Bayesian inverse problem (BIP), as the task of characterizing the probability
density
1 4
Tos (@ [ Y1) = Zmie (v' | @) : 9)
» Tpr(x) is the .
> Tlike (yJr | :c) is the likelihood function.
> Z = fRd Tlike (yT ‘ m) mpr() dz is the normalizing constant of the posterior density, called

the model evidence®.

4
The notation Z follows from the German term Zustandssumme.
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Bayesian inverse problem: the Gaussian likelihood

e We will assume that the errors are Gaussian with identity correlation matrices, i.e., all the
elements of e € Y come from the same Gaussian distribution with zero mean and variance

Oftentimes, we use the noise precision A = 1/02

obi obs*

e We have seen that the conditional measure of the data given a parameter value follows from
the distribution assumed on the noise:

€= [y - g(CB)} N(e 0 aobsI ); (10)
due to the additive error assumption, the data misfit y — G(«) follows the noise distribution.

e Then the likelihood function is the conditional probability density of the data given a param-

eter value, which is just a shifted version of the noise distribution N(y; G(z), 02, I,,):

Tike (ZIT | w) = ﬁ(fﬂ;yT) = Mexp < % 2 HZ/ - )Hi) . (11)

F. Uribe | LUT Universit SCIP
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Point estimators (1)

e The maximum a posteriori probability (MAP) estimator (or penalized maximum likelihood,
or poor's man Bayesian estimator), which estimates the mode of the posterior:

Tvap = arg max log(mpes( | ¥)). (12)
xeR4

e The posterior mean (PM) (or conditional mean or Bayesian estimator):
(13)

e Posterior credible sets: a set S,(y') C R? such that P[x € S,(y')] =1 — a is called a
posterior 100(1 — «)% credible set for x.

o Tip: highest probability density (HPD) credible sets, median, mode, or MAD, when the
underlying posterior is heavy-tailed or multimodal.
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Point estimators (1)
e The bias of an estimator Z of ' is defined as
Bias(z) = E[:f - acT] =E[z] — x; (14)
the norm of the bias tells us how far Z is on average from the true .
o If the bias and variance of an estimator exist, the (MSE) of the estimator
is defined as: )
MSE(z) :E[H@fﬁM — Bias(@) + V[&]; (15)

it measures the performance of an estimator.

e Finally, we say that an estimator is consistent, if it converges in probability to the true value
as the sample size goes to infinity.
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Point estimators: Bayes risk |

e Suppose the goal is to estimate the parameter vector &f. We choose and estimator z(y') ~
a2’ and a squared-error loss function to compare them:

2 (@, 2') = ||2(y!) - 21| (16)

e The expected value of the squared-error loss is the MSE of the estimator:

MSE(Z) = E[f> (Z(y"),z)] . (17)

e Note that the mean of the loss function depends on the unknown value 2. To obtain an
overall measure of performance of the estimator, we impose a prior distribution 7, on x.

F. Uribe | LUT Universit
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Point estimators: Bayes risk Il

e The Bayes risk of Z(y'), for a loss function f and prior distribution ,,, is defined as:

R(z)=E[f (z(y"), )] (18a)
=Eo[E,.[f (Z(¥').z) | z]]. (18b)

e In plain terms, the Bayes risk is the average MSE. Particularly, it can be seen as the loss
averaged over the parameter and the data.

e An estimator that minimizes the Bayes risk is called a Bayesian estimator. The posterior
mean is the minimizer of the Bayes risk, for any prior and likelihood, with respect to the
squared loss (finite variance).
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Gaussian algebra

e There are many ways to motivate the prevalence of the Gaussian distribution. It is sometimes
presented as arising from analytic results like the CLT, ...

e ...or the fact that the Gaussian distribution is the unique probability distribution with mean
w1 and covariance X maximizing the differential entropy functional (next Lecture).

e But the primary practical reason for the ubiquity of Gaussian probability distributions is that
they have convenient algebraic properties.

e This is analogous to the popularity of linear approximations in numerical computations:
The main reason to construct linear approximations is that linear functions offer a rich
analytic theory, and that computers are good at the basic linear operations — addition and
multiplication [3].

F. Uribe | LUT Universit



§ Lt
N University

Gaussian algebra

e In fact, the connection between linear functions and Gaussian distributions runs deeper:
Gaussians are a family of probability distributions that are preserved under all linear opera-
tions.

e The following properties will be used extensively:
» If a RV X is Gaussian distributed, then every affine transformation of it also has a Gaussian:

nx(x) =N(x;pu, =) and Y =GX +b, then 7y(y)=N(y;Gu+bGEG").
» The product of two Gaussian density functions is another Gaussian, scaled by a constant:
N(z; p1, BN (x5 p2, Bo) = N(z; 0, TN (1 po, T + o).
where * = (37" + ;1) ! and p* = 2% (27 + 25 o).

e These two properties also provide the mechanism for Gaussian inference as we see next.
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Linear Gaussian BIPs
Conjugate prior for a Gaussian linear model (with system matrix G € R4*?):
e If the prior density is Gaussian mp, () = N (2; fpr, Zpr)-
o And the likelihood is also Gaussian Tk (y | €) = N (y; Gz, Zops).
e Then the posterior is also Gaussian mpos(Z) = N (T; fpos; Zpos), With parameters® °:
(i) Version 1:
Yipos = Xpr — CGXpe Epos(Y) = ppr + C(y — Gppr), (19)
where C = 2, G (GE,GT + Sobs)
(ii) Version 2:
(20)

5
The derivation can be consulted in [4, p. 78]
6

| highly recommend the usage of the Python library sksparse.cholmod (Link) for sparse computations when working with
high-dimensional Gaussians.

F. Uribe | LUT Universit
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Sampling a Gaussian posterior using optimization (1)

e Find the posterior distribution involves the inversion of some potentially large matrices.
These can turn the problem infeasible in practice.

e The most direct sampling algorithm for a Gaussian distribution is based on the Cholesky
factorization. In this case, a sample from the Gaussian posterior is obtained as

x* = Hpos + A71/2z7

pos

where Apos = Egols is the precision matrix, z ~ A(0,1;) is a standard Gaussian random

vector, and A;/(fs is a lower triangular matrix with real and positive diagonal entries (Cholesky
factor).

e We can reformulate the problem starting from the standard Gaussian sampling formula, going
to the so-called normal equations and finally writing its least-squares form.

F. Uribe | LUT Universit
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Sampling a Gaussian posterior using optimization (I1)

o Replacing eq. (20) into the Gaussian sampling formula using precision matrices instead of
covariances, and based on the fact that our noise precision matrix is AI,,, we obtain:

513* Apoq (/\ GTy + Apr“pr) + lxpolq/2 : (21)

o Multiplying both sides by A,.s, we obtain

Aposw* = (/\ GTy + APFIJ’PF) + A;/(; (223)
(Ape +AGTG) & = (AGTy + Apepips) + (Ap + AGTG) " 2. (22b)

e Working out the expression for the case py = 0 yields a perturbed version of the so-called
normal equations which are solved for x*.
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Sampling a Gaussian posterior using optimization (1)

e From the normal equations, the task of sampling a Gaussian random vector can be written
as a least-squares problem. We draw a sample x* from the posterior by solving (assuming

Hpr = 0):

N2y

1/2
w*:argminHM:v—zHg with M:[A G], Z:[O
d

gty 51/2qu :| + z, (23)

where (assuming constant prior variance) § = 1/(;3r is a prior precision parameter, Ly, is a
square-root of the prior structure matrix’, and z ~ N(0,1,,,4). Here, we can use the scipy

function optimize.least_squares(lambda x: M(x)-z, x0).

o Nonlinear least-squares can be used when the forward operator is nonlinear. In this case, we
can use the Levenberg—Marquardt to solve the least-squares task (see, e.g., [1, p.118]).

7 We call a structure matrix L to the inverse of the correlation matrix R; which is analogous to the precision matrix being the
inverse of the covariance matrix. Note that for constant variance, 3, = UirR and Ay = 0L, with L = LIqLSq.
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Final comments (1)

e The posterior distribution can be correlated, even if the prior is uncorrelated.

e Since marginalization (sum rule) and conditioning (product rule) are the two elementary
operations of probability theory, “Gaussian distributions map probability theory to linear
algebra” — to matrix multiplication and inversion.

e The task of sampling a Gaussian can be posed as a least-squares problem. Then we can use
efficient optimization methods to draw samples from high-dimensional Gaussian distributions.
For example, the conjugate gradient method.

F. Uribe | LUT Universit
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Final comments (I1)

e We have seen that statistical inverse problems can be approached from a frequentist (opti-
mization) perspective, or from a Bayesian perspective (integration).

e Oftentimes, computing the posterior distributions is a complicated task. We can rely on
approximation methods to approach the problems in a simplified manner.

e Gaussian densities provide a link between probabilistic inference and linear algebra.
Though of limited expressiveness, they thus form the basis for computationally efficient
inference [3].

o The parameters of Gaussian models can be inferred using hierarchical inference (next lecture).
In most cases this poses a nonlinear (non-Gaussian) optimization/inference problem. But in
the special cases, conjugate priors allow analytic inference.

F. Uribe | LUT Universit
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