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Recap

Figure: The first part of the course focused on the blue block. Last part of our course will focus on the
Green block.
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Why inverse problems?

• The forward problem (FP) is to compute the output,
given a system and the input to this system.

• The inverse problem (IP) is to compute the input
given the other two quantities (system and output).
In most situations, we have noisy measurements of
the output.

• Inverse problems are some of the most important
mathematical tasks in science and mathematics be-
cause they tell us about parameters that we can-
not directly observe.

Figure: ;)
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PART I: inverse problems
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Inverse problems: definition

• Let y† ∈ Y be observational data in some separable Banach space – the data space Y.

• The data will be used to train a mathematical model, that is identify a (true) model parameter
x† ∈ X . The parameter space X can also be separable Banach space.

• Let G : X → Y be a measurable function called the forward response operator. It
represents the connection between parameter and data in the mathematical model.

Assuming an additive observation error, we define the inverse problem by

find x† ∈ X , such that y† = G
(
x†)

+ e†, (1)

where, e† ∈ Y is observational noise. We consider e† to be unknown and model it as a
realization of a random variable E.
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• Let y† ∈ Y be observational data in some separable Banach space – the data space Y.

• The data will be used to train a mathematical model, that is identify a (true) model parameter
x† ∈ X . The parameter space X can also be separable Banach space.

• Let G : X → Y be a measurable function called the forward response operator. It represents
the connection between parameter and data in the mathematical model.

• Assuming an additive observation error, we define the inverse problem by (see, e.g., [5])

find x† ∈ X , such that y† = G
(
x†)

+ e†, (1)

where, e† ∈ Y is observational noise. We consider e† to be unknown and model it as a
realization of a random variable with measure νobs.
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Inverse problems: well-posedness

• Inverse problems belong to the class of ill-posed problems1.

• Hadamard’s definition says that an inverse problem in well-posed if it satisfies the following
three requirements (see, e.g., [2]):

• Existence: The problem must have a solution.
• Uniqueness: There must be only one solution to the problem.
• Stability: The solution must depend continuously on the data. This means that arbitrarily

small perturbations of the data must not produce arbitrarily large perturbations of the solution.

• If the problem violates one or more of these requirements, it is said to be ill-posed.

• The existence condition is in general trivial, the uniqueness condition can often be fixed by
reformulation of the problem, the stability condition is much harder to deal with.

1
The term was coined in the early 20th century by Jacques S. Hadamard.
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Inverse problems: notes

• Note that if the noise takes any value in Y, the inverse problem is ill-posed [5].

• In practice, the inverse problem estimates an x that approximates the ground truth x†.

• The noise is oftentimes assumed to be Gaussian distributed with mean zero and non-singular
covariance matrix. Other noise assumptions exist in the literature, such as Laplace and
Poisson noises.

• The forward response operator can oftentimes be written as G = O ◦ G, defined as the
composition of the solution operator G with an observation operator O that maps the
forward solution to the data space.
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Discrete inverse problems: classical methods (I)

• In practice, the unknown parameter functions have to be discretized. Hence, the discrete
inverse problem will estimate an unknown model parameter x† ∈ X := Rd using noisy
observed data y† ∈ Y := Rm.

• If the forward operator is linear G(x) = Gx and noise is Gaussian (note similarity with
regression), the solution of eq. (1) can be estimated using ordinary least-squares (OLS) as

x† ≈ xα = arg min
x∈Rd

1
2

∥∥Gx − y†∥∥2
2 = (GTG)−1GTy†. (2)

• Due to the ill-posedness of eq. (1), OLS might not work in practice, we usually employ
deterministic regularization methods based on spectral filtering, such as: truncated SVD,
Tikhonov, or iterative algorithms (e.g., Landweber, Kaczmarz).
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Discrete inverse problems: classical methods (II)

• A more stable approach uses Tikhonov regularization (also known as ridge regression). The
potential issue of a near-singular matrix GTG is alleviated by adding positive elements,
thereby decreasing its condition number:

x† ≈ xα = arg min
x∈Rd

1
2

∥∥Gx − y†∥∥2
2 + α

2
∥∥L̄x

∥∥2
2 = (GTG + αL)−1GTy†, (3)

with L = L̄TL̄ a regularization matrix, with regularization parameter α > 0.

• Regularization can also be achieved using the statistical framework, which also offers a way
to model the potential uncertainty about the parameter x.
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PART II: statistical inverse problems
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Statistical inverse problems
• The statistical techniques that we will be most concerned

with are based on frequentist and Bayesian methods, and
inferences can be drawn from their use [6].

• Did the sun just explode? It is night so we are not sure
(from xkcd.com/1132/).

• The Sun gone nova is not repeatable, which makes it highly
unsuitable for frequentists which interpret probability as esti-
mate of how frequent an event is, given that we can repeat
the experiment many times.

• In contrast, Bayesian probability is interpreted as our degree
of belief giving all available prior knowledge, making it suit-
able for common sense reasoning about one-time events.

F. Uribe | LUT University SCIP | 10

https://xkcd.com/1132/


Frequentist inference

• Frequentists do not assign probabilities to the unknown parameters x. This means that one
can write likelihoods πlike, but not priors or posteriors; x is not a random variable.

• The frequentist paradigm considers y resulting from a random and repeatable experiment.

• In the frequentist viewpoint, there is no single preferred methodology for inverting the rela-
tionship between parameters and data. Instead, consider various estimators x̂ ≈ x†.

Relies on hypothesis testing, bias, mean-square error, confidence intervals to verify the
estimator x̂.

Common frequentist approaches include: (i) Maximum likelihood (ii) BLUE (best linear
unbiased estimators), (iii) best asymptotically normal (BAN) estimator, (iv) method of mo-
ments estimator (MME), etc.
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Frequentist inference: maximum likelihood (I)

• The method of maximum likelihood estimation (MLE) is quite a popular technique for
deriving estimators.

• We model a set of observations as a random sample from an unknown joint distribution
with density πlike(y | x) which is expressed in terms of a set of parameters x. The goal of
MLE is to determine the parameters x for which the observed data have the highest joint
probability.

Evaluating the joint density at the observed data sample y gives a real-valued function

L(x;y) = πlike(y | x) ∝ exp (−Φ(x)) , (4)

which is called the likelihood function, and Φ is the negative log-likelihood or potential
function.
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Frequentist inference: maximum likelihood (II)
• The goal is to find the values of the model parameters that maximize the likelihood function

over the parameter space, that is

x† ≈ x̂ML = arg max
x∈Rd

L(x;y);

intuitively, this selects the parameter value that makes the observed data most probable.

In general, no closed-form solution to the maximization problem is available, and an MLE
can only be found via numerical optimization. In practice, it is often convenient to work
with the potential function.

As the data size increases to infinity, sequences of MLEs converges in probability to the value
being estimated.

The MLE is identical to solving the inverse problem using OLS.
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Frequentist inference: maximum likelihood (II)
• The goal is to find the values of the model parameters that maximize the likelihood function

over the parameter space, that is

x† ≈ x̂ML = arg max
x∈Rd

L(x;y);

intuitively, this selects the parameter values that make the observed data most probable.

• In general, no closed-form solution to the maximization problem is available, and an MLE
can only be found via numerical optimization. In practice, it is often convenient to work
with the potential function.

• As the data size increases to infinity, sequences of MLEs converges in probability to the value
being estimated.

• The MLE is identical to solving the inverse problem using OLS.
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Frequentist inference: hypothesis testing

• Null-hypothesis significance testing (NHST) is still one of the most dominant approaches to
statistical inference, although heavily criticized.

• With NHST we want to test the estimator against the null-hypothesis (i.e., underlying
causative relationship does not exist). Moreover, the calculated probability of observing the
estimator (or larger), given the null-hypothesis, is called p-value.

• Rather than performing NHST, uncertainty of the estimated parameter can be represented
with the confidence interval (CI). Example: the 95% CI contains all the hypotheses param-
eter values that would not be rejected by p < 0.05 NHST. This implies that, in the long-run,
95% CI will capture the true parameter value 95% of the time.
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Bayesian inference: basic timeline

• Thomas Bayes (1763) - problem of inverse
probability: An Essay towards solving a
problem in the doctrine of chances.

• Pierre–Simon Laplace (1774) - Mémoire sur
la probabilité des causes par les événements.

• Harold Jeffreys (1939) - revival of the “ob-
jective” Bayesian view of probability.

• Edwin T. Jaynes (1957) - maximum en-
tropy, Bayesian/information theory.

• Andrew M. Stuart (2010) - foundations in
infinite dimensions/inverse problems [7].

Figure: Bayes (maybe?) and Laplace.
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Bayesian inference

• Whereas the difficulties related to MLE methods are mainly optimization problems, the
Bayesian approach often results in integration problems.

• In the Bayesian paradigm, information brought by the data y (a realization of πlike(· | x)), is
combined with prior information that is specified in a prior distribution with density πpr(x).

• Such information is summarized in a probability density πpos(x | y), called the posterior.
This is derived from the joint density πlike(y | x)πpr(x) using Bayes theorem.
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Bayesian inverse problem: measure-theoretic (I)

• First, we model the parameter x ∼ νpr as a RV. This reflects the uncertainty in the parameter.
Moreover, νpr is the so-called prior measure.

• We assume that x and e are independent RVs defined on an underlying probability space
(Ω, F ,P). Therefore, y := G

(
x

)
+ e is also a RV, reflecting the distribution of the data,

given an uncertain parameter. The conditional measure, given a realized value x′, is

νL := P[y ∈ · | x = x′] = νobs(· − G(x′)). (5)

• The solution to the Bayesian inverse problem is the posterior measure (given the observed
data y = y†) [5]

ν†
pos := P

[
x ∈ ·

∣∣ y† = G
(
x

)
+ e

]
. (6)
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Bayesian inverse problem: measure-theoretic (II)
• Bayes’ theorem gives a connection of νpr, νpos and νL in terms of their probability densities.

The Radon–Nikodym theorem implies that such densities exist:

dνL

dνY
(y†) =: πlike(y† | x′) dνpr

dνX
(x) =: πpr(x), (7)

where the dominating measures νX , νY are often given by the counting measure, the
Lebesgue measure, or a Gaussian measure.

The corresponding Radon–Nikodym derivative of the posterior wrt the prior, presents a
general version of Bayes’ formula

dν†
pos

dνpr
(x) = 1

Z
πlike(y† | x); (8)

for example, if x is infinite-dimensional and νpr is Gaussian, we set νX := νpr and πpr ≡ 1.
The posterior measure is then given in terms of a density wrt the Gaussian prior measure.
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Bayesian inverse problem: well-posedness
• Stuart [7]2 transferred Hadamard’s principle of well-posedness to Bayesian inverse problems:

the Bayesian inverse problem is Lipschitz well-posed, if ν†
pos exists, ν†

pos is unique, and
y† → ν†

pos is locally Lipschitz continuous (measured by the Hellinger distance).

• To verify stability, the distance between posteriors is typically measured in the Hellinger
distance. However, in practice, it is not possible to show Lipschitz well-posedness for the
Bayesian inversion for black-box models. Further, Hadamard’s concept contains only conti-
nuity, not Lipschitz continuity.

• Latz [5]3 extended the notion of well-posedness for a general class of probability metrics,
and by considering continuity instead of Lipschitz continuity of the data-to-posterior map.

2
A. M. Stuart. “Inverse problems: a Bayesian perspective”. In: Acta Numerica 19 (2010), pp. 451–559.

3 J. Latz. “On the Well-posedness of Bayesian Inverse Problems”. In: SIAM/ASA Journal on Uncertainty Quantification 8.1
(2020), pp. 451–482.
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Bayesian inverse problem: discrete case

• Let us go back to a less abstract setting. Recall that after discretization the unknown
parameter is modeled as a random vector X taking values x ∈ X := Rd and the noisy
observed data is y† ∈ Y := Rm.

• We define the Bayesian inverse problem (BIP), as the task of characterizing the probability
density

πpos
(
x

∣∣ y†)
= 1

Z
πlike

(
y† ∣∣ x)

πpr(x). (9)

▶ πpr(x) is the prior probability density.
▶ πlike

(
y†

∣∣ x)
is the likelihood function.

▶ Z =
∫
Rd πlike

(
y†

∣∣ x)
πpr(x) dx is the normalizing constant of the posterior density, called

the model evidence4.

4
The notation Z follows from the German term Zustandssumme.
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Bayesian inverse problem: the Gaussian likelihood
• We will assume that the errors are Gaussian with identity correlation matrices, i.e., all the

elements of e ∈ Y come from the same Gaussian distribution with zero mean and variance
σ2

obs. Oftentimes, we use the noise precision λ = 1/σ2
obs.

• We have seen that the conditional measure of the data given a parameter value follows from
the distribution assumed on the noise:

e = [y − G(x)] ∼ N (e;0, σ2
obsIm); (10)

due to the additive error assumption, the data misfit y− G(x) follows the noise distribution.

• Then the likelihood function is the conditional probability density of the data given a param-
eter value, which is just a shifted version of the noise distribution N (y; G(x), σ2

obsIm):

πlike
(
y† ∣∣ x)

= L(x;y†) = 1
(2π)m/2σm

obs
exp

(
− 1

2σ2
obs

∥∥y† − G(x)
∥∥2

2

)
. (11)
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Point estimators (I)
• The maximum a posteriori probability (MAP) estimator (or penalized maximum likelihood,

or poor’s man Bayesian estimator), which estimates the mode of the posterior:

x̂MAP = arg max
x∈Rd

log(πpos(x | y)). (12)

• The posterior mean (PM) (or conditional mean or Bayesian estimator):

x̂PM = Eπpos [x] =
∫
Rd

xπpos(x | y) dx. (13)

• Posterior credible sets: a set Sα(y†) ⊂ Rd, such that P
[
x ∈ Sα(y†)

]
= 1 − α is called a

posterior 100(1 − α)% credible set for x.

• Tip: highest probability density (HPD) credible sets, median, mode, or MAD, when the
underlying posterior is heavy-tailed or multimodal.
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Point estimators (II)

• The bias of an estimator x̂ of x† is defined as

Bias(x̂) = E
[
x̂ − x†]

= E[x̂] − x†; (14)

the norm of the bias tells us how far x̂ is on average from the true x†.

• If the bias and variance of an estimator exist, the mean squared error (MSE) of the estimator
is defined as:

MSE(x̂) = E
[∥∥x̂ − x†∥∥2

2

]
= Bias(x̂) +V[x̂] ; (15)

it measures the performance of an estimator.

• Finally, we say that an estimator is consistent, if it converges in probability to the true value
as the sample size goes to infinity.
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Point estimators: Bayes risk I

• Suppose the goal is to estimate the parameter vector x†. We choose and estimator x̂(y†) ≈
x† and a squared-error loss function to compare them:

f2
(
x̂,x†)

=
∥∥x̂(y†) − x†∥∥2

2 . (16)

• The expected value of the squared-error loss is the MSE of the estimator:

MSE(x̂) = E
[
f2

(
x̂(y†),x†)]

. (17)

• Note that the mean of the loss function depends on the unknown value x†. To obtain an
overall measure of performance of the estimator, we impose a prior distribution πpr on x.
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Point estimators: Bayes risk II

• The Bayes risk of x̂(y†), for a loss function f and prior distribution πpr, is defined as:

R(x̂) = E
[
f

(
x̂(y†),x

)]
(18a)

= Eθ

[
Ey|x

[
f

(
x̂(y†),x

)
| x

]]
. (18b)

• In plain terms, the Bayes risk is the average MSE. Particularly, it can be seen as the loss
averaged over the parameter and the data.

• An estimator that minimizes the Bayes risk is called a Bayesian estimator. The posterior
mean is the minimizer of the Bayes risk, for any prior and likelihood, with respect to the
squared loss (finite variance).
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PART III: The linear Gaussian case
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Gaussian algebra

• There are many ways to motivate the prevalence of the Gaussian distribution. It is sometimes
presented as arising from analytic results like the CLT, ...

• ...or the fact that the Gaussian distribution is the unique probability distribution with mean
µ and covariance Σ maximizing the differential entropy functional (next Lecture).

• But the primary practical reason for the ubiquity of Gaussian probability distributions is that
they have convenient algebraic properties.

• This is analogous to the popularity of linear approximations in numerical computations:
The main reason to construct linear approximations is that linear functions offer a rich
analytic theory, and that computers are good at the basic linear operations — addition and
multiplication [3].
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Gaussian algebra

• In fact, the connection between linear functions and Gaussian distributions runs deeper:
Gaussians are a family of probability distributions that are preserved under all linear opera-
tions.

• The following properties will be used extensively:
▶ If a RV X is Gaussian distributed, then every affine transformation of it also has a Gaussian:

πX(x) = N (x;µ, Σ) and Y = GX + b, then πY (y) = N (y; Gµ + b, GΣGT).

▶ The product of two Gaussian density functions is another Gaussian, scaled by a constant:

N (x;µ1, Σ1)N (x;µ2, Σ2) = N (x;µ⋆, Σ⋆)N (µ1;µ2, Σ1 + Σ2).

where Σ⋆ = (Σ−1
1 + Σ−1

2 )−1 and µ⋆ = Σ⋆
(
Σ−1

1 µ1 + Σ−1
2 µ2

)
.

• These two properties also provide the mechanism for Gaussian inference as we see next.
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Linear Gaussian BIPs
Conjugate prior for a Gaussian linear model (with system matrix G ∈ Rd×d):

• If the prior density is Gaussian πpr(x) = N (x;µpr, Σpr).

• And the likelihood is also Gaussian πlike(y | x) = N (y; Gx, Σobs).

• Then the posterior is also Gaussian πpos(x) = N (x;µpos, Σpos), with parameters5 6:
(i) Version 1:

Σpos = Σpr − CGΣpr µpos(y) = µpr + C(y − Gµpr), (19)
where C = ΣprGT (

GΣprGT + Σobs
)−1.

(ii) Version 2:

Σpos =
(
Σ−1

pr + GTΣ−1
obsG

)−1
µpos(y) = Σpos

(
GTΣ−1

obsy + Σ−1
pr µpr

)
. (20)

5
The derivation can be consulted in [4, p. 78]

6 I highly recommend the usage of the Python library sksparse.cholmod (Link) for sparse computations when working with
high-dimensional Gaussians.
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Sampling a Gaussian posterior using optimization (I)

• Find the posterior distribution involves the inversion of some potentially large matrices.
These can turn the problem infeasible in practice.

• The most direct sampling algorithm for a Gaussian distribution is based on the Cholesky
factorization. In this case, a sample from the Gaussian posterior is obtained as

x⋆ = µpos + Λ−1/2
pos z,

where Λpos = Σ−1
pos is the precision matrix, z ∼ N (0, Id) is a standard Gaussian random

vector, and Λ1/2
pos is a lower triangular matrix with real and positive diagonal entries (Cholesky

factor).

• We can reformulate the problem starting from the standard Gaussian sampling formula, going
to the so-called normal equations and finally writing its least-squares form.
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Sampling a Gaussian posterior using optimization (II)

• Replacing eq. (20) into the Gaussian sampling formula using precision matrices instead of
covariances, and based on the fact that our noise precision matrix is λIm, we obtain:

x⋆ = Λ−1
pos

(
λ GTy + Λprµpr

)
+ Λ−1/2

pos z. (21)

• Multiplying both sides by Λpos, we obtain

Λposx
⋆ =

(
λ GTy + Λprµpr

)
+ Λ1/2

posz (22a)(
Λpr + λGTG

)
x⋆ =

(
λ GTy + Λprµpr

)
+

(
Λpr + λGTG

)1/2
z. (22b)

• Working out the expression for the case µpr = 0 yields a perturbed version of the so-called
normal equations which are solved for x⋆.
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Sampling a Gaussian posterior using optimization (III)
• From the normal equations, the task of sampling a Gaussian random vector can be written

as a least-squares problem. We draw a sample x⋆ from the posterior by solving (assuming
µpr = 0):

x⋆ = arg min
x∈Rd

∥Mx − z∥2
2 with M =

[
λ1/2G
δ1/2Lsq

]
, z =

[
λ1/2y
0d

]
+ z̃, (23)

where (assuming constant prior variance) δ = 1/σ2
pr is a prior precision parameter, Lsq is a

square-root of the prior structure matrix7, and z̃ ∼ N (0, Im+d). Here, we can use the scipy
function optimize.least_squares(lambda x: M(x)-z, x0).

• Nonlinear least-squares can be used when the forward operator is nonlinear. In this case, we
can use the Levenberg–Marquardt to solve the least-squares task (see, e.g., [1, p.118]).

7 We call a structure matrix L to the inverse of the correlation matrix R; which is analogous to the precision matrix being the
inverse of the covariance matrix. Note that for constant variance, Σpr = σ2

prR and Λpr = δL, with L = LT
sqLsq.
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Final comments (I)

• The posterior distribution can be correlated, even if the prior is uncorrelated.

• Since marginalization (sum rule) and conditioning (product rule) are the two elementary
operations of probability theory, “Gaussian distributions map probability theory to linear
algebra” — to matrix multiplication and inversion.

• The task of sampling a Gaussian can be posed as a least-squares problem. Then we can use
efficient optimization methods to draw samples from high-dimensional Gaussian distributions.
For example, the conjugate gradient method.
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Final comments (II)

• We have seen that statistical inverse problems can be approached from a frequentist (opti-
mization) perspective, or from a Bayesian perspective (integration).

• Oftentimes, computing the posterior distributions is a complicated task. We can rely on
approximation methods to approach the problems in a simplified manner.

• Gaussian densities provide a link between probabilistic inference and linear algebra.
Though of limited expressiveness, they thus form the basis for computationally efficient
inference [3].

• The parameters of Gaussian models can be inferred using hierarchical inference (next lecture).
In most cases this poses a nonlinear (non-Gaussian) optimization/inference problem. But in
the special cases, conjugate priors allow analytic inference.
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