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Overview

MCMC changed our the emphasis from “closed form” solutions to algorithms,
expanded our impact to solving “real” applied problems, expanded our impact to
improving numerical algorithms using statistical ideas, and led us into a world
where “exact” now means “simulated”!!
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1. Introduction
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Bayesian inverse problems

• All unknowns are represented as random variables with prior densities defined e.g., with
respect to the Lebesgue measure (or counting measure if discrete).

• Prior information given probabilistically, i.e., probability density functions; used as regular-
ization.

• We define a Bayesian inverse problem, as the task of characterizing the density

π (x) := πpos (x | y) = 1
Z

πlike (y | x)πpr(x). (1)

▶ πpr(x) is the prior probability density.
▶ πlike (y | x) is the likelihood function.
▶ Z =

∫
Rd πlike (y | x) πpr(x) dx is the normalizing constant of the posterior density, called the

model evidence.
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Summarizing posterior inferences

• The posterior mean (PM) (or conditional mean) 1:

xPM = Eπpos [x] =
∫
Rd

xπpos(x | y) dx. (2)

• Posterior credible sets, posterior quantiles (abusing the notation):

P[x > a] =
∫ ∞

a

πpos(x | y) dx. (3)

• Posterior moments and statistics: standard deviation, median, MAD, etc.

• Posterior realizations for direct assessment. Posterior marginals (e.g., via a plotmatrix).

1
Optimality: it minimizes the expected MSE (Bayes risk) for any prior and likelihood, as long as the second order moments exist.
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General comments (i)

• Until now we have simply assumed that we can draw random variables, vectors and fields
from any desired distribution.

• For some problems, we cannot do this either at all, or in a reasonable amount of time. It is
often feasible however to draw dependent samples whose distribution is close to and indeed
approaches the desired one.

• In Markov chain Monte Carlo (MCMC) we do this by sampling x1,x2, . . . ,xn from a
Markov chain constructed so that the distribution of xi approaches the target distribution.

• The primary method is the Metropolis algorithm, which was named one of the ten most
important algorithms of the twentieth century.
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General comments (ii)

• We have multiple MCMC algorithms to draw samples from a target posterior distribution.

• As usual, we estimate an expectation µ = E[f(x)] =
∫

f(x)π(x) dx:

µ ≈ µ̂ = 1
n

n∑
i=1

f(xi), (4)

in the MCMC context, we have two main challenges:
(i) The draws xi have a distribution that approaches π, which is usually not equal to π, hence,

the estimate is biased.
(ii) The xi are (in general) statistically dependent, and thus µ̂ is harder to estimate. In extreme

cases, the xi can get stuck in some subset of their domain and then µ̂ will fail to converge.
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MCMC: basic timeline
• Nicholas Metropolis (1953) - Metropolis algo-

rithm for generating samples from the Boltz-
mann distribution.

• Wilfred K. Hastings (1970) - Metropolis–
Hastings algorithm, the most common
MCMC.

• Julian Besag - Gibbs sampler (1974), MALA
algorithm (1994).

• Simon Duane et al. (1987) - Hamiltonian MC.

• Peter Green (1995) - Reversible jump MCMC.

• Joris Bierkens (2015) - non-reversible MCMC.
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This lecture...

• The lecture is based on multiple references. However, we mostly follow Chapters 11 and 12
of the book by Art Owen2, which is freely available online.

2
A. B. Owen. Monte Carlo theory, methods and examples. artowen.su.domains/mc/, 2018.
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2. Markov chains
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Markov chains

• Our solution to hard sampling problems will be to run a Markov chain for a long time so
that the values of the chain have a distribution which approaches our target density π which
is defined on X .

• In plain terms, a Markov chain is a “memoryless” stochastic process: to know a future state,
we just need to know the current state. This is called the Markov property.

• Formally, a discrete time Markov chain X = {Xn} with a discrete state space X satisfies
the Markov property:

P[Xn+1 = j | Xn = i, Xn−1 = in−1, . . . , X0 = i0] = P[Xn+1 = j | Xi = i] ; (5)

“past and future are conditionally independent given the present”.
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Markov chains
• In practice, we work with time-homogeneous Markov chains for which the transition prob-

abilities P[Xn+1 = j | Xn = i] = qij are independent of n. In this case, we can arrange the
transition probabilities as a (transition) matrix Q ∈ Rm×m; {qij} (rows sum to one).

• Suppose that at step n, Xn has distribution s ∈ R1×m (row probability vector); think of
this as a PMF. Here, the element si = P[Xn = i] denotes the probability that the chain is
in state i at step n.

• A natural question is to what is the probability that the chain has state value j at step n+1?
Using the total probability theorem,

P[Xn+1 = j] =
∑

i

P[Xn+1 = j | Xn = i]P[Xi = i] =
∑

i

si qij jth entry of sQ; (6)

successive iteration of this equation describes the evolution of the chain, i.e., sQ is the
distribution at n + 1: “one step in the future, right multiply by Q”.
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Markov chains

Some properties:

• We say that a Markov chain is irreducible (connected), if it is possible to get from anywhere
to anywhere. Otherwise, it is called reducible.

• We say that a state is recurrent, if starting there, the chain has probability 1 of returning
to that state. Otherwise, it is called transient.

• We say that a Markov chain is periodic, if the states start repeating themselves with a given
period. Otherwise, it is called aperiodic.

• We say that s is stationary for a Markov chain with transition matrix Q, if sQ = s.
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Markov chains

Figure: Four different Markov chains. How can they be classified?
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Markov chains
• For an irreducible Markov chain (with finitely many states), we have the following3:

(i) The stationary distribution s exists.
(ii) The stationary distribution is unique.
(iii) If the Markov chain is further aperiodic (Qm is strictly positive for some m),

then P[Xn = i] → si as n → ∞.

• We normally work with Markov chains that are “easy to deal with”. This class of chains is
called time reversible.

• A Markov chain with transition matrix Q is reversible, if there is a s such that

si qij = sj qji ∀i, j (detailed balance condition). (7)

• If the Markov chain is reversible with respect to s, then s is the stationary distribution.
3

see Theorem 1.8.3 in [12]
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Markov chains (example)
• Suppose the state space are (Rain, Sunny, Cloudy) and weather follows a Markov process.

Hence, the probability of tomorrow’s weather simply depends on today’s weather, and not
any other previous days (example from [17]).

• The probability transitions are given by

Q =

 0.5 0.25 0.25
0.5 0 0.5
0.25 0.25 0.5

 . (8)

• Suppose today is sunny (and then rainy). What is the expected weather two days from now?
Seven days?

If s0 = [0, 1, 0] s2 = s0Q2 = [0.375, 0.25, 0.375] s7 = s0Q7 = [0.4, 0.2, 0.4]
If s0 = [1, 0, 0] s7 = s0Q7 = [0.4, 0.2, 0.4].

Note that after a sufficient amount of time, the expected weather in independent of the
starting value, i.e., the chain has reached a stationary distribution.
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Markov chains

• The basic idea of discrete-state Markov chains can be generalized to a continuous state
Markov process by having a probability kernel P (x,x′) that satisfies∫

X
P (x,x′) dx′ = 1, x,x′ ∈ X . (9)

• Now, the reversibility (detailed balance) condition is:∫
A

π(x)P (x,x′) dx =
∫

B

π(x′)P (x′,x) dx′, (10)

where x ∈ A, x′ ∈ B, and A, B ⊂ X , P (·, ·) denotes a Markov transition kernel.

• Different approaches exist to generate kernels P that ensure eq. (10), and hence setting π
as the stationary distribution.
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3. MCMC – Metropolis–Hastings
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Metropolis–Hastings

• If we make a good selection for the transition kernel, it could asymptotically converge to a
target distribution independently of where we started from.

• More importantly, we can use the realizations of the Markov chain in Monte Carlo estimators
i.e., we can average across the path. However, even if Xn were exact draws, they are not
independent anymore.

• In Metropolis–Hastings (MH), the condition eq. (10) is satisfied by separating the transition
into two stages: the proposal and the acceptance/rejection steps.

• These are represented respectively by the proposal distribution q(x | y) which accounts for
the conditional probability of x given the proposed state y, and the acceptance probability
α(x,y) which expresses the conditional probability of accepting the proposed state y.
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Metropolis–Hastings
• The transition kernel can be written as:

P (x | y) =
∫

B

q(x | y)α(x,y) dy︸ ︷︷ ︸
acceptance

+1(x ∈ B)
∫

X
q(x | y)(1 − α(x,y)) dy︸ ︷︷ ︸

rejection

. (11)

• Substituting eq. (11) into eq. (10), yields∫
A

π(x)
∫

B

q(x | y)α(x,y) dy dx =
∫

B

π(y)
∫

A

q(y | x)α(y,x) dx dy, (12)

• Which can be written in compact form as∫
A×B

π(x)q(x | y)α(x,y) dydx =
∫

A×B

π(y)q(y | x)α(y,x) dxdy. (13)
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Metropolis–Hastings
• The equality eq. (13) holds if

π(x)q(x | y)α(x,y) = π(y)q(y | x)α(y,x) (14a)
q(x | y)α(x,y)
q(y | x)α(y,x) = π(y)

π(x) (14b)

α(x,y)
α(y,x) = π(y)q(y | x)

π(x)q(x | y) . (14c)

• An acceptance mechanism that fulfills the condition in eq. (14c) is proposed by [9] (based
on [10], which uses a symmetric proposal distribution)

α(x,y) = min
(

1,
π(y)q(y | x)
π(x)q(x | y)

)
; (15)

an unnormalized π can be used as the normalizing constants cancel out in the ratio.

F. Uribe | LUT University SCIP | 20



Metropolis–Hastings
Algorithm 1: Metropolis–Hastings

1 Initialize x0;
2 for i = 1 to n do
3 Sample x⋆ ∼ q(· | xi−1);
4 Compute the acceptance probability

α = min
(

1,
π(x⋆)q(xi−1 | x⋆)

π(xi−1)q(x⋆ | xi−1)

)
Sample u ∼ U(0, 1);

5 if u ≤ α then
6 Accept xi = x⋆

7 else
8 Reject xi = xi−1
9 end

10 end
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Metropolis–Hastings (burn-in and thinning)
• One of the difficulties with MH is the potentially strong dependence in the Markov chain

states (samples). A common practice is ignore the first nb < n generated points and estimate
µ by

µ̂ = 1
n − nb

n∑
i=nb+1

f(xi). (16)

• This practice is called burn-in or warm-up. The distribution of Xi usually only approaches
π as i increases and so the first few observations might be very unrepresentative. Including
them could bias the answer.

• We could think of the burn-in period as one way of finding a good starting point for the
simulation. Some authors recommend nb = 0.5n.

• We can also “thin” the chain by selecting every other ntth sample (discarding those in
between). This process is also called subsampling.
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Metropolis–Hastings (general comments)

• The MH acceptance probability is a default choice for α(x,y) that provides detailed balance.
With this default in hand we can then search for good proposal distributions q(x,y) to suit
any given problem.

• It is recommended to formulate the algorithm using log densities, for stability.

• The performance of MH deteriorates with increasing dimension of the parameter space. In
this case, the acceptance probability at each step becomes very small as the dimension
increases, resulting in slow convergence rates and a large number of repeated samples.
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Barker MCMC ⋆

• Recall the Metropolis–Hastings acceptance probability that holds the reversibility condition:

αMH(x,y) = min
(

1,
π(y)q(y | x)
π(x)q(x | y)

)
. (17)

• Several other choices are possible. One alternative proposed by Barker4 is the acceptance
probability

αB(x,y) = π(y)q(y | x)
π(x)q(x | y) + π(y)q(y | x) . (18)

• In general αMH is preferred over αB because, for the same choice of proposal q(y | x),
αMH will result in Markov chains that produce ergodic averages with smallest asymptotic
variance5. In particular, αMH will maximize the probability of moving from x to y.

4 A. A. Barker. “Monte Carlo calculations of the radial distribution functions for a proton-electron plasma”. In: Australian Journal
of Physics 18 (1965), pp. 119–1347.

5
L. Tierney. “A note on Metropolis-Hastings kernels for general state spaces”. In: Annals of applied probability (1998), pp. 1–9.
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Independence sampler

• Perhaps the simplest proposal mechanism is to take iid proposals from some distribution q
that does not depend on the present location x. Then q(x⋆ | x) = q(y).

• The MH proposal for this independence sampler, simplifies to

α(x,x⋆) = min
(

1,
π(x⋆)q(x)
π(x)q(x⋆)

)
; (19)

the independence sampler is also called the Metropolized independence sampler.

• The independence sampler is closely related to importance sampling. It is generally safer to
have slightly heavy tails in an independence sampler proposal q instead of light tail.
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Random walk Metropolis

• A random walk is a process where the increments zi = xi − xi−1 are iid.

• In random walk Metropolis (RWM) the proposals take the form x⋆
i = xi + zi, where zi

are iid random vectors.

• Suppose that z ∼ q. Then q(x⋆ | x) can be written q(x⋆ −x), where we now use q to also
represent the probability density of z.

• We will focus on random walks where the distribution q is symmetric (e.g., a Gaussian) and

α(x,x⋆) = min
(

1,
π(x⋆)
π(x)

)
, (20)

because the proposal ratio cancels.
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Random walk Metropolis

• It is common in MCMC that we have to tune our proposals. For this we have to specify the
so-called proposal scale β. Under a Gaussian proposal, this is equal to a standard deviation.

• If the acceptance rate is very small, we can infer that β is too large and then try a smaller
value. Conversely, a very high acceptance rate suggests that we should raise β. Under a
famous result from [7], it is optimal to tune β so that about 23.4% of proposals are accepted.

• In [7], Gaussian targets and Gaussian proposal were considered, so they were able to study
how the proposal variance should depend on the dimension d. They recommend β = 2.4 for
d = 1, and β = 2.38/

√
d for large d.

• The acceptance rate when using the optimal β is about 44% for d = 1 and decreases rapidly
to a limiting value of about 23.4% as d → ∞. In general, as long as the rejection rate is
between 15% and 40% the efficiency is close to that of the optimal β.
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Random walk Metropolis (example)

• Obtain samples from the probability density,

π(x) ∝ 0.3 exp(−0.2x2) + 0.7 exp(−0.2(x − 10)2).

• We use a Gaussian proposal N (y; x, β2) (centered at x), and the initial state is defined as
x0 = 5.

• To show the effect of the proposal scale, simulations for different values of the standard
deviation, β = 0.1, β = 1, β = 14 and β = 50 are performed.

• We run n = 5 × 103 samples without burn-in.
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Random walk Metropolis (example)
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Figure: Bimodal target: scale parameter β = 0.1. Acceptance probability 0.98. The plot at the bottom
is called a trace plot.
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Random walk Metropolis (example)
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Figure: Bimodal target: scale parameter β = 0.5. Acceptance probability 0.80.
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Random walk Metropolis (example)
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Figure: Bimodal target: scale parameter β = 14. Acceptance probability 0.23.
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Random walk Metropolis (example)
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Figure: Bimodal target: scale parameter β = 50. Acceptance probability 0.08.
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Adaptive RWM (I)
• We have to specify a suitable proposal scaling for our MCMC algorithm. This requires some

parameter study. We can, however, employ different techniques that perform adaptation of
the proposal scale such that the acceptance probability of the sampler is optimal.

• Learn a better proposal q(x⋆ | x) from past samples: (i) an appropriate proposal scale, and
(ii) an appropriate proposal orientation and anisotropy; this is essential in problems with
strong correlation in π.

• Adaptive Metropolis scheme of [8]
(i) Covariance matrix at step i

Σ⋆
i = β2 Ĉov(x1, . . . ,xi) + β2ϵId, (21)

where ϵ > 0 and β2 = 2.42/d.
(ii) Proposals are Gaussians at xi. Use a covariance Σ0 for the first i0 steps, then use Σ⋆

i .
(iii) Chain is not Markov. Nonetheless, one can prove that the chain converges to π.
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Adaption with global adaptive scaling (II)
• Vanishing adaptation ensures that the chain depends less and less on recently visited states

of the chain. This sets controlled MCMC algorithms that produce samples asymptotically
distributed according to π.

• Adaptive Metropolis scheme of [1]. At step i update the proposal scale as

log(βi+1) = log(βi) + γi+1(α(xi, x⋆) − α⋆),

where {γi} ⊂ (0, ∞) is a sequence of stepsizes which ensures that the variations of the
chain states {xi} vanish, α⋆ is the desired acceptance rate. Note that this is just a standard
Robbins–Monro recursion.

• The standard approach consists of choosing the sequence {γi} deterministic and non-
increasing, but it is also possible to choose {γi} random. A standard choice is to make
γi = C/ic, for c ∈ (1/(1 + β), 1] and constant C.
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4. MCMC – diagnostics
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MCMC error and diagnostics

• Two of the hardest problems in MCMC are:
(i) deciding whether the distribution of xi has nearly converged to π, and
(ii) deciding whether the xi are mixing well.

• While traces are quite useful, they are only one way diagnostics. When they show us that
the chain is not sampling π well, we can believe it. Unfortunately a trace can look perfectly
good even when the sample is poor.

• The autocorrelation function has the same problem. If it shows slowly decaying autocorrela-
tions, we know there is a problem, but if they decay rapidly we might still have missed part
of the space.

• One approach to generating diagnostics is to run multiple independently generated Markov
chains, starting them in different places.
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MCMC error and diagnostics
• Recall from Monte Carlo that the mean estimator had a variance V[µ̂n] = σ2/n, but the

samples were iid. In MCMC, we have:

µ̂n = 1
n

n∑
i=1

f(Xi) and V[µ̂n] = σ2

n
τf , (22)

where τf is the integrated autocorrelation time (or inefficiency factor) for the chain f(Xi).

• The integrated autocorrelation time (IACT) for a (weakly) stationary process is defined as6

τf =
∞∑

k=−∞

ρf (k) = 1 + 2
∞∑

k=1
ρk, (23)

where ρk is the normalized autocorrelation function at lag k.
6

this is from an asymptotic formula for the variance of the average of a correlated sequence.
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MCMC error and diagnostics

• An unbiased estimator of the IACT is

τf ≈ τ̂f = 1 + 2
n−1∑
k=1

(
1 − k

n

)
ρk; (24)

at longer lags k, the estimator starts to contain more noise than signal, and summing all
the way out to n will result in a very noisy estimate of τf . Hence, we typically evaluate this
estimator at sample size m ≪ n.

• We have that the variance of the mean estimator using MCMC samples is:

V[µ̂n] ≈ σ2

n
τ̂f . (25)
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MCMC error and diagnostics
• The inefficiency factor can be used to derive the effective sample size:

neff = n

1 + 2
∑∞

k=1 ρk
≈ n

1 + 2
∑n−1

k=1
(
1 − k

n

)
ρk

. (26)

the effective sample size is utilized to compare between the variance estimated via correlated
MCMC samples and the ideal case of a variance computed from independent draws. Thus,
the aim is to obtain an neff as close as possible to n.

• Other relevant metric used as an indicator of how fast the MCMC chains are mixing is the
mean square jump (MSJ) distance, defined as

MSJ = 1
n

n∑
i=1

∥xi − xi−1∥2
2 , (27)

the larger the magnitude of the MSJ, the better the mixing.
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MCMC error and diagnostics7

• A common test for convergence is the Geweke test. This method splits the chain (after
burn-in period) into two parts, the first 10% and the last 50%. If the chain is stationary, the
averages of these two parts should be approximately equal.

• Other diagnostics are: Gelman–Rubin diagnostic (which compares multiple chains), the
Raftery-Lewis diagnostic (which is a method to find a proper burn-in), computing distance
between distributions, etc.

• There has long been controversy over whether it is better to simulate one long chain of
length n or m chains of length n/m each. There are settings where the single long chain
has less bias. Parallel computing changes the picture.

7
We recommend ArviZ to analize and postprocess MCMC results (https://python.arviz.org/en/stable/)

F. Uribe | LUT University SCIP | 41

https://python.arviz.org/en/stable/


MCMC error and diagnostics (RWM example)
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Figure: Cumulative mean and autocorrelation for Markov chain obtained with RWM for proposal
different scaling. The neff is for each case: [91, 128, 10875, 3578], here n = 105 and nb = 0.2n.
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5. MCMC – Gibbs sampler
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Gibbs sampler

• We want to sample from π(x) where x = [x1, . . . , xj−1, xj , xj+1, . . . , xd]. It might be
difficult to construct a good proposal q that changes the whole vector at once.

• However, suppose we can construct good proposals that changes only one (or a few) com-
ponent(s) of x. For example, we consider that x is comprised of xj and the remaining
elements, which we can lump together into x−j .

• In the Gibbs sampler, we repeatedly sample one component after another from the appro-
priate conditional distribution. Many models used in statistics and machine learning have
simple conditional distributions for which the Gibbs sampler is easy to use.
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Gibbs sampler

• We write the full conditional distribution of xj given x−j as π(xj | x−j), with marginal
π(x−j).

• There are two versions: in the random scan Gibbs sampler, the component to update is
chosen at random from 1, . . . , d. In the systematic scan Gibbs sampler, the components
are updated sequentially.

• We can show directly that sampling component j from its full conditional distribution pre-
serves the stationary distribution π. Suppose that x ∼ π and that we replace xj by a value
z ∼ π(xj |x−j), obtaining the point y with yj = z and yk = xk for k ̸= j. Then

π(y−j)π(yj | y−j) = π(y) (28a)
π(x−j)π(z | x−j) = π(x). (28b)
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Gibbs sampler

• We may also understand the Gibbs sampler by relating it to MH. Suppose that we are at
point x and have decided to modify component j of x to take the value z. Let y be the
point with yj = z and yk = xk for k ̸= j. If we use y as the proposal in MH, then

π(y−j)π(z | x−j)π(xj | x−j)
π(x−j)π(xj | x−j)π(z | x−j) = 1, (29)

thus, if we update component j of x by sampling from its full conditional distribution, then
we can view this as a MH proposal that is never rejected.

• Random scan Gibbs has detailed balance, while fixed scan does not, but we can construct a
reversible Gibbs sampler with symmetric scan.
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Gibbs sampler
• Gibbs sampling provides an alternative generation scheme based on successive generations

from the full conditional distributions. The Gibbs sampler described now involves a complete
scan over the components.

• Given a state x(k) =
[
x

(k)
1 , x

(k)
2 , . . . , x

(k)
d

]T, samples (k = 1, . . . , n) from π are drawn
component by component, as follows

x
(k+1)
1 ∼ π

(
x1

∣∣∣ x
(k)
2 , x

(k)
3 , . . . , x

(k)
d

)
,

x
(k+1)
2 ∼ π

(
x2

∣∣∣ x
(k+1)
1 , x

(k)
3 , . . . , x

(k)
d

)
,

...

x
(k+1)
d ∼ π

(
xd

∣∣∣ x
(k+1)
1 , x

(k+1)
2 , . . . , x

(k+1)
d−1

)
.

(30)

• There are many other possible updating strategies for visiting the components of x.
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Gibbs sampler

Algorithm 2: Random scan Gibbs.
1 set initial state x0;
2 for i = 1 to n do
3 sample an index j from U(1, d);
4 sample component z ∼ π(· | x(i−1)

−j
) ;

5 set x(i) = x(i−1) and x
(i)
j

= z;
6 end

Algorithm 3: Fixed scan Gibbs.
1 set initial state x0;
2 for i = 1 to n do
3 set index j = ((i − 1) mod d) + 1;
4 sample component z ∼ π(· | x(i−1)

−j
) ;

5 set x(i) = x(i−1) and x
(i)
j

= z;
6 end
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Gibbs sampler

• The Gibbs sampler can fail to be irreducible when the space is disconnected.

• For the Gibbs sampler to work properly, it must be possible to reach any point from any
other, using only moves parallel to the coordinate axes.

• Main difficulties:
(i) If the variables are strongly correlated (negatively or positively) then it may take too long to

reach the stationary distribution. In this case, the problem would benefit from a reparametriza-
tion in terms of less correlated random variables.

(ii) Need to be able to show that the Gibbs sampler Markov chain is ergodic (irreducible and
aperiodic). Obvious in many circumstances but sometimes an issue.
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Gibbs sampler (example)

• Draw samples from the following (mixed) joint distribution of with x = {0, 1, ..., m} (dis-
crete) and 0 ≤ y ≤ 1 (continuous),

πXY (x, y) ∝
(

m
x

)
yx+α−1 (1 − y)m−x+β−1; (31)

where, m = 16, α = 2, β = 4.

• The conditional densities are:

π(x | y) = Binomial(m, y) and π(y | x) = beta(α + x, n − β + x). (32)

• The power of the Gibbs sampler is that by computing a sequence of these univariate condi-
tional random variables, we can compute any feature of either marginal distribution.
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Gibbs sampler (example)
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Figure: Samples from the mixed distribution.
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Metropolis-within-Gibbs sampler
• Sometimes we can sample most, but not all of the full conditional distributions needed for

the Gibbs sampler. For example, suppose that we can sample from πj | −j for every j from
1 to d, except for one value j⋆.

• The hybrid Gibbs or Metropolis-within-Gibbs algorithm uses a MH update in place of the
missing j⋆th full conditional distribution.

• The sampling schemes inside the Gibbs structure only require the generation of one sample
for every Gibbs iteration. This is because the Markov chains associated to the individual
conditionals are not required to reach stationarity at each Gibbs iteration. The reasons for
this are discussed in [15, p.393].

• Nevertheless, some authors suggest that performing a few extra within-Gibbs iterations can
be beneficial to accelerate the convergence of the Gibbs chain and to reduce correlation in
the samples.
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6. MCMC – preconditioned Crank-Nicolson
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Preconditioned Crank–Nicolson (I)

• The performance of the RWM algorithms deteriorates with increasing dimension of the
parameter space. The preconditioned Crank–Nicolson (pCN) method avoids this issue by
designing proposal that perform-well in function spaces.

• Given a target posterior, the preconditioned overdamped Langevin equation is,

dxt

dt
= −P∇Ψ(x;y) +

√
2P dWt

dt
, (33)

where Wt is a standard Brownian motion process, P is a symmetric and positive semi-definite
preconditioner, and the (unnormalized) logarithm of the posterior density Ψ and its gradient
can be written as:

Ψ(x;y) = 1
2

∥∥∥Σ−1/2
pr x

∥∥∥2

2
+ Φ(x;y), ∇Ψ(x;y) = Σ−1

pr x + ∇Φ(x;y). (34)
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Preconditioned Crank–Nicolson (II)

• We can now substitute the gradient in eq. (34) into eq. (33) and solve the resulting stochastic
differential equation using a Crank–Nicolson scheme with discretization step ∆ [14].

• It can be shown that by making the preconditioner equal to the prior covariance, the following
proposal mechanism arises from the Crank–Nicolson discretization [4]:

x⋆ = (2 − ∆)
(2 + ∆)x +

√
8∆

(2 + ∆) ξ −→ x⋆ =
√

1 − β2x + βξ, (35)

where ξ ∼ N (0,Σpr) and β =
√

8∆/ (2 + ∆).

• A common choice for the scaling parameter is β ∈ (0, 1] for discretization steps ∆ ∈ (0, 2]
(in general β → 0 as ∆ → ∞).
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Preconditioned Crank–Nicolson (III)

• Given a current state x(i), one has from eq. (35) that the associated proposal distribution
is Gaussian with mean vector

√
1 − β2x(i) and covariance matrix β2Σpr.

• The acceptance probability of the pCN algorithm only requires evaluation of the potential
function [5]

α(x,x⋆) = min (1, exp (Φ(x;y) − Φ(x⋆;y))) . (36)

• pCN is applicable when the posterior distribution has density with respect to a Gaussian
reference measure (prior). However, it can also be extended to more general priors by
applying a transformation.
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7. MCMC – using gradients
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Metropolis-adjusted Langevin algorithm

• In the Metropolis-adjusted Langevin algorithm (MALA), new states are proposed using
(overdamped) Langevin dynamics, and these are accepted or rejected using the MH algo-
rithm8.

• Let π denote a probability density function on Rd, one from which it is desired to draw an
ensemble of iid samples. We consider the overdamped Langevin Itô diffusion

dxt

dt
= 1

2∇ log π(x) + dWt

dt
, (37)

driven by the time derivative of a standard Brownian motion W .

• In the limit, as t → ∞, the probability distribution X(t) approaches a stationary distribution,
which is also invariant under the diffusion. It turns out that this distribution is π.

8
If the acceptance/rejection is not applied the resulting approximate method is called ULA (unadjusted Langevin algorithm).
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Metropolis-adjusted Langevin algorithm
• Approximate sample paths of the Langevin diffusion can be generated by the Euler–Maruyama

method with a fixed time step ε > 0. We set x0 and then recursively define an approximation
to the true solution by

xk+1 := xk + ε2

2 ∇ log π(xk) + ε ξk, (38)

where each ξk ∼ N (0, Id).

• In contrast to the Euler–Maruyama method for simulating the Langevin diffusion. MALA
incorporates an additional step. We consider the above update rule as defining a proposal
x̃ for a new state:

x̃k+1 := xk + ε2

2 ∇ log π(xk) + ε ξk; (39)

this proposal is accepted or rejected according to the MH algorithm.
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Metropolis-adjusted Langevin algorithm
• That is, the acceptance probability is:

α(xk, x̃k+1) = min
(

1,
π(x̃k+1)q(xk | x̃k+1)
π(xk)q(x̃k+1 | xk)

)
; (40)

where the proposal has the form

q(x′ | x) = N
(
x′; x + ε2

2 ∇ log π(x), ε2Id

)
. (41)

• The combined dynamics of the Langevin diffusion and the MH algorithm satisfy the detailed
balance conditions necessary for the existence of a unique, invariant, stationary distribution.

• For limited classes of target distributions, the optimal acceptance rate for this algorithm can
be shown to be 0.574; this can be used to tune ε.
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Hamiltonian MC (intro)

Figure: The mode of the target as a
planet and the gradient of the target as
its gravitational field. Taken from [3].

• So far we discussed classic MCMC approaches to
draw samples from a target distribution π(x).

• Hamiltonian Monte Carlo (HMC): use Hamiltonian
dynamics to simulate particle trajectories ([6]).

• Define a Hamiltonian function in terms of the target
distribution.

• Introduce an auxiliary momentum variables, which
typically have independent Gaussian distributions.
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Hamiltonian MC (intro)

• Hamiltonian dynamics operate on a d-dimensional position vector q, and a d-dimensional
momentum vector p, so that the full state space has 2d dimensions. The system is described
by a function of q and p known as the Hamiltonian H(q,p).

• In HMC, one uses Hamiltonian functions that can be written as (closed-system dynamics):

H(q,p) = U(q)︸ ︷︷ ︸
potential energy

+ K(p, q)︸ ︷︷ ︸
kinetic energy

. (42)

• The potential energy is completely determined by the target distribution, indeed U(q) is
equal to the logarithm of the target distribution π.

• The kinetic energy is unconstrained and must be specified by the implementation.
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Hamiltonian MC

• The Hamiltonian is an energy function for the joint state of ’position-momentum’, and so
defines a joint distribution for them as follows:

π(q,p) = 1
Z

exp
(

−H(q,p)
T

)
= 1

Z
exp (−U(q)) exp (−K(p)) . (43)

• There are several ways to set the kinetic energy (density of the auxiliary momentum) [3]:
(i) Euclidean–Gaussian kinetic energy: using a fixed covariance M estimated from the position

parameters, K(p, q) = 1
2p

TM−1p + ln(|M|) + const.
(ii) Riemann–Gaussian kinetic energy: unlike the Euclidean metric, varies as one moves through

parameter space, K(p, q) = 1
2p

TΣ(q)−1p + 1
2 ln(|Σ(q)|) + const.

(iii) Non-Gaussian kinetic energies.
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Hamiltonian MC

• Hamilton’s equations read as follows:

dq
dt

= +∂H

∂p
= [M−1p] (44a)

dp
dt

= −∂H

∂q
= −∂K

∂q
− ∂U

∂q
, (44b)

where ∂U
∂q is the gradient of the logarithm of the target density.

• Discretizing Hamilton’s equations:
(i) Euler’s method (no).
(ii) Modified Euler’s method (a bit better).
(iii) Symplectic integrators: the leapfrog method (the standard choice).
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Hamiltonian MC (remarks)

Properties
• Hamiltonian dynamics are time-reversible and volume-preserving.
• The dynamics keep the Hamiltonian invariant. A Hamiltonian trajectory will (if simulated

exactly) move within a hypersurface of constant probability density.

Each iteration of the HMC algorithm has two steps. Both steps leave the joint distribution of
π(q, p) invariant (detailed balance) [11].

• In the first step, new values of p are randomly drawn from their Gaussian distribution,
independently of the current q.

• In the second step, a Metropolis update is performed, using Hamiltonian dynamics to propose
a new state.

• Optimal acceptance rate is 0.65. The step size ε and trajectory length L need to be tuned.
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Hamiltonian MC (example)

• More typical behavior of HMC and RWM is illustrated by a 100-dimensional multivariate
Gaussian distribution in which the variables are independent, with means of zero, and stan-
dard deviations of 0.01, 0.02, ..., 0.99, 1.

• Suppose that we have no knowledge of the details of this distribution, so we will use HMC
with the same simple, rotationally symmetric kinetic energy function.

• Consistent with this, we use HMC to this distribution using trajectories with L = 150 and
with ε randomly selected for each iteration, uniformly from (0.0104, 0.0156); here n =
103. We compare with a RWM with proposal standard deviation drawn uniformly from
(0.0176, 0.0264); with a lag period of 150.

• These are close to optimal settings for both methods. The rejection rate was 0.13 for HMC
and 0.75 for RWM.

F. Uribe | LUT University SCIP | 66



Hamiltonian MC (example)
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Figure: Values for the variable with largest standard deviation for the 100-dimensional example, from a
RWM run and an HMC run.
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Hamiltonian MC (example)
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Figure: Estimates of mean and standard deviations for the 100-dimensional example, using RWM.
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Hamiltonian MC (example)
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Figure: Estimates of mean and standard deviations for the 100-dimensional example, using HMC.
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The no-U-turn sampler (NUTS)

• HMC is an algorithm that avoids the random walk behavior and sensitivity to correlated
parameters that plague many MCMC methods by taking a series of steps informed by first-
order gradient information.

• However, HMC’s performance is highly sensitive to two user-specified parameters: a step
size ε and a desired number of steps L.

• The No-U-Turn Sampler (NUTS), an extension to HMC that eliminates the need to set a
number of steps L, as well as the step-size.

• We simulate in discrete time steps, and to make sure you explore the parameter space
properly you simulate steps in one direction and the twice as many in the other direction,
turn around again, etc. At some point you want to stop this and a good way of doing that
is when you have done a U-turn (i.e., appear to have gone all over the place).
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The no-U-turn sampler (NUTS)

• NUTS begins by introducing an auxiliary variable with conditional distribution. After re-
sampling from this distribution, NUTS uses the leapfrog integrator to trace out a path
forwards and backwards in fictitious time. First running forwards or backwards 1 step, then
forwards or backwards 2 steps, then forwards or backwards 4 steps, etc.

• This doubling process implicitly builds a balanced binary tree whose leaf nodes correspond
to position-momentum state. The doubling is stopped when the subtrajectory from the
leftmost to the rightmost nodes of any balanced subtree of the overall binary tree starts to
double back on itself (i.e., the fictional particle starts to make a “U-turn”).

• At this point NUTS stops the simulation and samples from among the set of points computed
during the simulation, taking care to preserve detailed balance.
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The no-U-turn sampler (NUTS)

• To adapt the step-size, NUTS uses a modified dual averaging algorithm during the burn-in
phase.

• The good thing about NUTS is that proposals are made based on the shape of the posterior
and they can happend at the other end of the distribution. In contrast, MH makes proposals
within a ball, and Gibbs sampling only moves along one (or at least very few) dimensions at
a time.
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8. Approximation methods
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The Laplace approximation (I)

• As an alternative to simulation of integrals, we can also attempt analytic approximations.

• One of the oldest and most useful approximations is the integral Laplace approximation. It is
based on the following argument: Suppose that we are interested in evaluating the integral∫

A

f(x | y)dx, (45)

for a fixed y, and f non-negative and integrable.

• Write
f(x | y) = exp(nh(x | y)),

where n is a parameter that can go to infinity.
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The Laplace approximation (II)
• Use a Taylor series expansion of h(x | y) about a point x0 to obtain

h(x | y) ≈ h(x0 | y)+(x−x0)h′(x0 | y)+(x − x0)2

2 h′′(x0 | y)+(x − x0)3

3! h′′′(x0 | y)+Rn(x)

while the remainder Rn(x) satisfies limx→x0 Rn(x)/(x − x0)3 = 0.

• Now choose x0 = x⋆, the value that satisfies h′(x⋆ | y) = 0 and maximizes h(x | y) for
a given value of y. Then, the linear term in the Taylor series is zero and we have the
approximation∫

A

exp(nh(x | y))dx = exp(nh(x⋆ | y))
∫

A

exp
(

n

(
(x − x⋆)2

2

)
h′′(x⋆|y)

)
(46a)

exp
(

n

(
(x − x⋆)3

3!

)
h′′′(x⋆|y)

)
dx (46b)

which is valid within a neighborhood of x⋆.
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The Laplace approximation (III)
• The cubic term in the exponent is now expanded in a series around x⋆ and using the Taylor

expansion of the exponential function, we obtain:

1 + n

(
(x − x⋆)3

3!

)
h′′′(x⋆|y) + n2

(
(x − x⋆)6

2!(3!)2

)
[h′′′(x⋆|y)]2 (47)

and∫
A

exp(nh(x | y))dx = exp(nh(x⋆ | y))
∫

A

exp
(

n

(
(x − x⋆)2

2

)
h′′(x⋆|y)

)
(48a)[

1 + n

(
(x − x⋆)3

3!

)
h′′′(x⋆|y) + n2

(
(x − x⋆)6

2!(3!)2

)
[h′′′(x⋆|y)]2 + Rn(x)

]
dx (48b)

• Excluding Rn, we call the integral approximations of a first-order, if it includes only the first
term in the right-hand side; of a second-order, if it includes the first two terms; and of a
third-order, if it includes all three terms.
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The Laplace approximation (IV)

• We can evaluate these expressions further since the above integrand is the kernel of a
Gaussian density with mean x⋆ and variance 1/(nh′′(x⋆|y)). This Gaussian approximation
is the so-called Laplace approximation.

• More precisely, letting Φ denote the standard Gaussian CDF, and taking A = [a, b], we can
evaluate the integral in the first-order approximation to obtain (with n = 1)∫ b

a

exp(h(x | y))dx = exp(h(x⋆ | y))

√
2π

−h′′(x⋆ | y) (49a)[
Φ
(√

−h′′(x⋆ | y)(b − x⋆)
)

− Φ
(√

−h′′(x⋆ | y)(a − x⋆)
)]

. (49b)
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The Laplace approximation (V)

• The Laplace approximation is reasonable in the central region of the density, it becomes
quite unacceptable in the tails.

• In problems where Monte Carlo calculations are prohibitive because of computing time, the
Laplace approximation can be useful as a guide to the solution of the problem [15].

• Also, the corresponding Taylor series can be used as a proposal density (for MCMC), which
is particularly useful in problems where no obvious proposal exists.

F. Uribe | LUT University SCIP | 78



The saddlepoint approximation (I)
• The saddlepoint approximation, in contrast to the Laplace approximation, is mainly a tech-

nique for approximating a function rather than an integral, although it naturally leads to an
integral approximation (Proposed by Henry E. Daniels in 1954).

• Suppose that we are interested in evaluating the integral

g(y) =
∫

A

π(x | y)dx, (50)

for a range of values of y.

• One interpretation of a saddlepoint approximation is that for each value of y, we do a Laplace
approximation centered at x⋆ (the saddle point9).

• One way to derive the saddlepoint approximation is to use an Edgeworth expansion (aka
Gram–Charlier A series).

9 also minimax point; it is a point on the surface of a function where the slopes (derivatives) in orthogonal directions are all zero,
but which is not a local extremum of the function.
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The saddlepoint approximation (II)
• As a result of a quite detailed derivation, we obtain the approximation to the density of X

to be

πX(x) =
√

n

σ
φ

(
x − µ

σ/
√

n

){
1 + κ

6
√

n

((
x − µ

σ/
√

n

)3
− 3

(
x − µ

σ/
√

n

))
+ O(1/n)

}
. (51)

• Ignoring the term within braces produces the usual Gaussian approximation, which is accurate
to O(1/

√
n).

• If we are using eq. (51) for values of x near µ, then the value of the expression in braces
is close to zero, and the approximation will then be accurate to O(1/n). The trick of the
saddlepoint approximation is to make this always be the case,

• To do so, we use a family of densities such that, for each x, we can choose a density from
the family to cancel the term in braces in eq. (51).
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The saddlepoint approximation (III)

• One method of creating such a family is through a technique known as exponential tilting
(aka or Exponential Change of Measure). The result of the exponential tilt is a family of
Edgeworth expansions for πX(x) indexed by a parameter τ , that is

πX(x) = exp (−n[τx − K(τ)])
√

n

στ
φ

(
x − µτ

στ /
√

n

)
(52a){

1 + κτ

6
√

n

((
x − µτ

στ /
√

n

)3
− 3

(
x − µτ

στ /
√

n

))
+ O(1/n)

}
. (52b)

• As the parameter τ free to choose, for each x we choose τ = τ(x) so that the mean satisfies
µτ = x. This choice cancels the middle term in the square brackets), thereby improving the
order of the approximation.
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The saddlepoint approximation (IV)

• If K(τ) = log(E[exp τX]) is the cumulant generating function, we can choose τ so that
K ′(τ) = x, which is the saddlepoint equation.

• Denoting στ = K ′′(τ), and τ̂ the value obtained from the saddlepoint equation, we get the
saddlepoint approximation (with n = 1):

πX(x) = exp (K(τ̂) − τ̂x) 1
στ̂

φ (0) + (1 + O(1)) (53a)

≈ 1√
2πστ̂

exp (K(τ̂) − τ̂x) . (53b)

• The saddlepoint can also be used to approximate the tail area of a distribution [15].

• This better error rates are obtained by renormalizing the approximation so that it integrates
to 1.
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Final remarks
• Other algorithms we did not cover in class are:

(i) Auxiliary variable: slice sampler, simulated annealing, simulated tempering, Hit-and-run.
(ii) Sequential algorithms: sequential importance sampling, population Monte Carlo, etc.
(iii) Approximate methods: Laplace approximations, approximate Bayesian computation (likelihodod-

free), variational Bayesian inference, transport maps, Stein variational gradient descent, etc.

• We covered the most common MCMC algorithms used in practice. The particular choice of
a method will depend on your application and computational resources.

• Quite often we have to work with approximate methods. Sampling is a computationally
intensive task, which complicates application of UQ in general inverse problems.

• UQ keeps growing by the day; new samplers and techniques are addressing complicated
inference tasks.

• Check this cool demo ! Link Chi Feng’s MCMC demo.
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